Edward Chlebus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1591723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 647-655.	2.6	520
2	Correlation between process parameters, microstructure and properties of 316†L stainless steel processed by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 64-73.	2.6	337
3	Microstructure and mechanical behaviour of Ti―6Al―7Nb alloy produced by selective laser melting. Materials Characterization, 2011, 62, 488-495.	1.9	333
4	Design of experiments approach in AZ31 powder selective laser melting process optimization. Archives of Civil and Mechanical Engineering, 2017, 17, 9-18.	1.9	65
5	Effect of Scanning and Support Strategies on Relative Density of SLM-ed H13 Steel in Relation to Specimen Size. Materials, 2019, 12, 239.	1.3	48
6	Wear and corrosion behaviour of Inconel 718 laser surface alloyed with rhenium. Materials and Design, 2017, 132, 349-359.	3.3	46
7	Titanium alloyed with rhenium by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 620, 155-163.	2.6	43
8	Comparison of electropolished 316L steel samples manufactured by SLM and traditional technology. Rapid Prototyping Journal, 2019, 25, 566-580.	1.6	36
9	Parameters in selective laser melting for processing metallic powders. Proceedings of SPIE, 2012, , .	0.8	33
10	Modelling and calculation of properties of sliding guideways. International Journal of Machine Tools and Manufacture, 1999, 39, 1823-1839.	6.2	30
11	Microstructure and mechanical properties of Ti–Re alloys manufactured by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 765, 138290.	2.6	26
12	Fatigue crack growth rate and tensile strength of Re modified Inconel 718 produced by means of selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 698, 289-301.	2.6	25
13	Selective laser melting of magnesium AZ31B alloy powder. Rapid Prototyping Journal, 2019, 26, 249-258.	1.6	25
14	Application of Ti6Al7Nb Alloy for the Manufacture of Biomechanical Functional Structures (BFS) for Custom-Made Bone Implants. Materials, 2018, 11, 971.	1.3	22
15	Fabrication of microscaffolds from Ti-6Al-7Nb alloy by SLM. Rapid Prototyping Journal, 2015, 21, 393-401.	1.6	21
16	A hybrid spares demand forecasting method dedicated to mining industry. Applied Mathematical Modelling, 2017, 49, 87-107.	2.2	19
17	Microbial Biofilms Are Able to Destroy Hydroxyapatite in the Absence of Host Immunity InÂVitro. Journal of Oral and Maxillofacial Surgery, 2015, 73, 451-464.	0.5	17
18	The ability of S.aureus to form biofilm on the Ti-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications. Acta of Bioengineering and Biomechanics, 2013, 15, 69-76.	0.2	16

EDWARD CHLEBUS

#	Article	IF	CITATIONS
19	The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6479-6489.	1.1	14
20	Hot Corrosion of Ti–Re Alloys Fabricated by Selective Laser Melting. Oxidation of Metals, 2018, 90, 83-96.	1.0	12
21	Laser cutting of composite sandwich structures. Archives of Civil and Mechanical Engineering, 2017, 17, 545-554.	1.9	10
22	Composite Laser-Clad Coating on Titanium Substrate Using Pure Hydroxyapatite Powder. Powder Metallurgy and Metal Ceramics, 2015, 54, 318-323.	0.4	7
23	System for laser microsurfacing of metal powders. Welding International, 2016, 30, 98-102.	0.3	6
24	System laserowego mikronapawania proszków metali. PrzeglÄd Spawalnictwa, 2015, 83, .	0.5	5
25	Variant simulation in design and risk estimation of manufacturing system. Journal of Manufacturing Technology Management, 2006, 17, 448-459.	3.3	4
26	Fatigue Crack Growth Rates and Tensile Strength of Titanium Produced by Means of Selective Laser Melting. Key Engineering Materials, 0, 627, 305-308.	0.4	4
27	Concept of a Data Exchange Agent System for Automatic Construction of Simulation Models of Manufacturing Processes. Lecture Notes in Computer Science, 2011, , 381-388.	1.0	3
28	The chemical digestion of Ti6Al7Nb scaffolds produced by Selective Laser Melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm. Acta of Bioengineering and Biomechanics, 2016, 18, 115-20.	0.2	3
29	Examples of Laser Processing Control with Machine Vision Feedback. Solid State Phenomena, 2014, 223, 325-332.	0.3	2
30	The Use of Selective Laser Melting as a Method of New Materials Development. Lecture Notes in Mechanical Engineering, 2019, , 403-410.	0.3	2
31	Rule-Based Expert System Dedicated for Technological Applications. Lecture Notes in Computer Science, 2011, , 373-380.	1.0	2
32	Titanium Scaffolds for Custom CMF Restorations. , 2012, , .		1
33	Influence of laser power on the penetration depth and geometry of scanning tracks in selective laser melting. , 2016, , .		1
34	Processing of Magnesium Alloy by Selective Laser Melting. Lecture Notes in Mechanical Engineering, 2019, , 411-418.	0.3	1
35	Intelligent Data Processing in Recycling of Household Appliances. Lecture Notes in Computer Science, 2012, , 241-249.	1.0	0
36	FEM Analysis of Mini-Plate for Osteosynthesis of Mandibular Fractures Dedicated for Future Manufacturing with Additive Technologies (AM). Lecture Notes in Mechanical Engineering, 2019, , 806-813.	0.3	0