Hazel E Assender

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1590811/publications.pdf

Version: 2024-02-01

687363 752698 29 411 13 20 citations h-index g-index papers 29 29 29 639 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantitative ATR-IR Analysis of Anisotropic Polymer Films:Â Surface Structure of Commercial PET. Macromolecules, 2005, 38, 9258-9265.	4.8	38
2	High-throughput physical vapour deposition flexible thermoelectric generators. Scientific Reports, 2019, 9, 4393.	3.3	36
3	Phase Separation and Crystallization in High Hard Block Content Polyurethane Thin Films. Macromolecules, 2015, 48, 5358-5366.	4.8	34
4	Effect of Oxygen, Moisture and Illumination on the Stability and Reliability of Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) OTFTs during Operation and Storage. ACS Applied Materials & Dinaphtho[2,3-b]thiophene (DNTT) OTFTs during Operation and Storage. ACS Applied Materials & Dinaphtho (2,3-b) and Dinaphtho (2,3-b	8.0	31
5	A high-yield vacuum-evaporation-based R2R-compatible fabrication route for organic electronic circuits. Organic Electronics, 2014, 15, 1493-1502.	2.6	31
6	Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics. ACS Applied Materials & Dot Photovoltaics.	8.0	29
7	Near-surface crystallization of PET. Polymer, 2012, 53, 5554-5559.	3.8	26
8	Towards Wearable and Flexible Sensors and Circuits Integration for Stress Monitoring. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2208-2215.	6.3	22
9	Improving efficiency of MEH-PPV/TiO2 solar cells by lithium salt modification. Organic Electronics, 2010, 11, 649-657.	2.6	17
10	Flexography Printing for Organic Thin Film Transistors. Materials Today: Proceedings, 2018, 5, 16051-16057.	1.8	17
11	Roll-to-roll patterning of Al/Cu/Ag electrodes on flexible poly(ethylene terephthalate) by oil masking: a comparison of thermal evaporation and magnetron sputtering. Applied Surface Science, 2020, 505, 144294.	6.1	17
12	A high-yielding evaporation-based process for organic transistors based on the semiconductor DNTT. Organic Electronics, 2014, 15, 1998-2006.	2.6	16
13	Hysteresis-Free Vacuum-Processed Acrylate–Pentacene Thin-Film Transistors. IEEE Electron Device Letters, 2013, 34, 268-270.	3.9	14
14	<i>In situ</i> AFM study of nearâ€surface crystallization in PET and PEN. Journal of Applied Polymer Science, 2016, 133, .	2.6	11
15	Thermoelectric behaviour of Bi-Te films on polymer substrates DC-sputtered at room-temperature in moving web deposition. Surface and Coatings Technology, 2020, 385, 125393.	4.8	11
16	Selective ozone treatment of PDMS printing stamps for selective Ag metallization: A new approach to improving resolution in patterned flexible/stretchable electronics. Journal of Colloid and Interface Science, 2020, 568, 273-281.	9.4	8
17	Vacuum production of OTFTs by vapour jet deposition of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) on a lauryl acrylate functionalised dielectric surface. Organic Electronics, 2016, 31, 90-97.	2.6	7
18	Modelling of a vacuum metallization patterning method for organic electronics. Surface and Coatings Technology, 2018, 336, 128-132.	4.8	7

#	Article	IF	CITATIONS
19	Static and Dynamic Postannealing Strategies for Roll-to-Roll Fabrication of DC Magnetron Sputtered Bismuth Telluride Thin Films onto Polymer Webs. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10149-10160.	8.0	7
20	BixTey thermoelectric thin films sputtered at room temperature onto moving polymer web: Effect of gas pressure on materials properties. Thin Solid Films, 2020, 712, 138311.	1.8	6
21	Nanodefect-controlled permeation in AlOx/polymer gas barrier films. Thin Solid Films, 2017, 642, 142-150.	1.8	5
22	Synthesis of statistical PET/PEN random block copolymers and their crystallizability in the bulk and at the surface. Journal of Applied Polymer Science, 2018, 135, 46515.	2.6	5
23	Linear Electron Beam Assisted Roll-to-Roll in-Vacuum Flexographic Patterning for Flexible Thermoelectric Generators. Coatings, 2021, 11, 1470.	2.6	5
24	Elastic (acrylate/polydimethylsiloxane) substrate-to-coating interlayers for improving the mechanical resilience of thermoelectric films on poly(ethylene terephthalate) during roll-to-roll manufacture and in service operation. Surface and Coatings Technology, 2022, 434, 128167.	4.8	4
25	Device Optimization and Largeâ€Scale Rollâ€toâ€Roll Manufacturability of Flexible Thinâ€Film Thermoelectric Generators. Energy Technology, 2021, 9, 2001008.	3.8	3
26	Novel Stacking Design of a Flexible Thinâ€Film Thermoelectric Generator with a Metal–Insulator–Semiconductor Architecture. Advanced Electronic Materials, 2021, 7, 2100201.	5.1	3
27	Roll-to-Roll processable OTFT-based Amplifier and Application for pH sensing. , 2019, , .		1
28	Crystalline morphologies at the surface of PET/PEN random copolymer films. Polymer Crystallization, 2019, 2, e10087.	0.8	0
29	Cover Image: Crystalline morphologies at the surface of PET/PEN random copolymer films. Polymer Crystallization, 2019, 2, e10121.	0.8	0