
## Michael Margaliot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1590424/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Diagonal Stability of Discrete-Time \$k\$-Positive Linear Systems With Applications to Nonlinear Systems. IEEE Transactions on Automatic Control, 2022, 67, 4308-4313.                                                  | 5.7 | 7         |
| 2  | <mml:math <br="" display="inline" id="d1e142" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si7.svg"&gt;<mml:mi>k</mml:mi></mml:math> -contraction: Theory and applications. Automatica,<br>2022, 136, 110048. | 5.0 | 16        |
| 3  | Large-scale mRNA translation and the intricate effects of competition for the finite pool of ribosomes. Journal of the Royal Society Interface, 2022, 19, 20220033.                                                     | 3.4 | 10        |
| 4  | Minimum Effort Decentralized Control Design for Contracting Network Systems. , 2022, 6, 2731-2736.                                                                                                                      |     | 1         |
| 5  | Discrete-Time \$k\$-Positive Linear Systems. IEEE Transactions on Automatic Control, 2021, 66, 399-405.                                                                                                                 | 5.7 | 10        |
| 6  | Is My System of ODEs <i>k</i> -Cooperative?. , 2021, 5, 73-78.                                                                                                                                                          |     | 8         |
| 7  | On the exponent of several classes of oscillatory matrices. Linear Algebra and Its Applications, 2021, 608, 363-386.                                                                                                    | 0.9 | 1         |
| 8  | A generalization of linear positive systems with applications to nonlinear systems: Invariant sets and the Poincaré–Bendixson property. Automatica, 2021, 123, 109358.                                                  | 5.0 | 15        |
| 9  | Random Attraction in the TASEP Model. SIAM Journal on Applied Dynamical Systems, 2021, 20, 65-93.                                                                                                                       | 1.6 | 5         |
| 10 | Variability in mRNA translation: a random matrix theory approach. Scientific Reports, 2021, 11, 5300.                                                                                                                   | 3.3 | 11        |
| 11 | Maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach. Royal Society Open Science, 2021, 8, 210878.                                                                   | 2.4 | 6         |
| 12 | Compound matrices in systems and control theory. , 2021, , .                                                                                                                                                            |     | 6         |
| 13 | Behavior of Totally Positive Differential Systems Near a Periodic Solution. , 2021, , .                                                                                                                                 |     | 1         |
| 14 | Serial interconnections of 1-contracting and 2-contracting systems. , 2021, , .                                                                                                                                         |     | 4         |
| 15 | Dynamical Systems With a Cyclic Sign Variation Diminishing Property. IEEE Transactions on Automatic<br>Control, 2020, 65, 941-954.                                                                                      | 5.7 | 14        |
| 16 | Entrainment to subharmonic trajectories in oscillatory discrete-timeÂsystems. Automatica, 2020, 116,<br>108919.                                                                                                         | 5.0 | 10        |
| 17 | Ribosome Flow Model with Different Site Sizes. SIAM Journal on Applied Dynamical Systems, 2020, 19, 541-576.                                                                                                            | 1.6 | 16        |
|    |                                                                                                                                                                                                                         |     |           |

18 On Totally Positive Discrete- Time Systems. , 2019, , .

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | No Switching Policy Is Optimal for a Positive Linear System With a Bottleneck Entrance. , 2019, 3, 889-894.                                                                                                                          |     | 7         |
| 20 | A Generalization of Linear Positive Systems. , 2019, , .                                                                                                                                                                             |     | 4         |
| 21 | Approximating the Steady-State Periodic Solutions of Contractive Systems. IEEE Transactions on Automatic Control, 2019, 64, 847-853.                                                                                                 | 5.7 | 1         |
| 22 | Networks of ribosome flow models for modeling and analyzing intracellular traffic. Scientific Reports, 2019, 9, 1703.                                                                                                                | 3.3 | 16        |
| 23 | A Polynomial-Time Algorithm for Solving the Minimal Observability Problem in Conjunctive Boolean<br>Networks. IEEE Transactions on Automatic Control, 2019, 64, 2727-2736.                                                           | 5.7 | 38        |
| 24 | Ribosome flow model with nonhomogeneous site sizes. , 2019, , .                                                                                                                                                                      |     | 0         |
| 25 | Revisiting totally positive differential systems: A tutorial and new results. Automatica, 2019, 101, 1-14.                                                                                                                           | 5.0 | 37        |
| 26 | Output Selection and Observer Design for Boolean Control Networks: A Sub-Optimal<br>Polynomial-Complexity Algorithm. , 2019, 3, 210-215.                                                                                             |     | 16        |
| 27 | On the spectral properties of nonsingular matrices that are strictly sign-regular for some order with applications to totally positive discrete-time systems. Journal of Mathematical Analysis and Applications, 2019, 474, 524-543. | 1.0 | 12        |
| 28 | Controllability Analysis and Control Synthesis for the Ribosome Flow Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1351-1364.                                                                  | 3.0 | 11        |
| 29 | Entrainment in the master equation. Royal Society Open Science, 2018, 5, 172157.                                                                                                                                                     | 2.4 | 11        |
| 30 | A Generalization of Smillie's Theorem on Strongly Cooperative Tridiagonal Systems. , 2018, , .                                                                                                                                       |     | 3         |
| 31 | Analysis of Nonlinear Tridiagonal Cooperative Systems using Totally Positive Linear Differential Systems. , 2018, , .                                                                                                                |     | 1         |
| 32 | Modeling and Analyzing the Flow of Molecular Machines in Gene Expression. RNA Technologies, 2018, ,<br>275-300.                                                                                                                      | 0.3 | 5         |
| 33 | Minimal controllability of conjunctive Boolean networks is NP-complete. Automatica, 2018, 92, 56-62.                                                                                                                                 | 5.0 | 37        |
| 34 | Optimal Down Regulation of mRNA Translation. Scientific Reports, 2017, 7, 41243.                                                                                                                                                     | 3.3 | 19        |
| 35 | On Approximating Contractive Systems. IEEE Transactions on Automatic Control, 2017, 62, 6451-6457.                                                                                                                                   | 5.7 | 6         |
| 36 | Optimal Translation Along a Circular mRNA. Scientific Reports, 2017, 7, 9464.                                                                                                                                                        | 3.3 | 14        |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ribosome flow model with extended objects. Journal of the Royal Society Interface, 2017, 14, 20170128.                                                                        | 3.4 | 16        |
| 38 | Approximating periodic trajectories of contractive systems. , 2017, , .                                                                                                       |     | 2         |
| 39 | A deterministic mathematical model for bidirectional excluded flow with Langmuir kinetics. PLoS ONE, 2017, 12, e0182178.                                                      | 2.5 | 13        |
| 40 | Checkable Conditions for Contraction After Small Transients in Time and Amplitude. Lecture Notes in Control and Information Sciences, 2017, , 279-305.                        | 1.0 | 10        |
| 41 | A deterministic model for one-dimensional excluded flow with local interactions. PLoS ONE, 2017, 12, e0182074.                                                                | 2.5 | 5         |
| 42 | On the Ribosomal Density that Maximizes Protein Translation Rate. PLoS ONE, 2016, 11, e0166481.                                                                               | 2.5 | 35        |
| 43 | High-order maximum principles for the stability analysis of positive bilinear control systems. Optimal<br>Control Applications and Methods, 2016, 37, 1056-1073.              | 2.1 | 2         |
| 44 | Controlling the ribosomal density profile in mRNA translation. , 2016, , .                                                                                                    |     | 1         |
| 45 | A model for competition for ribosomes in the cell. Journal of the Royal Society Interface, 2016, 13, 20151062.                                                                | 3.4 | 94        |
| 46 | Contraction after small transients. Automatica, 2016, 67, 178-184.                                                                                                            | 5.0 | 31        |
| 47 | Sensitivity of mRNA Translation. Scientific Reports, 2015, 5, 12795.                                                                                                          | 3.3 | 31        |
| 48 | Ribosome Flow Model on a Ring. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 1429-1439.                                                        | 3.0 | 34        |
| 49 | Knowledge Extraction from Support Vector Machines: A Fuzzy Logic Approach. Studies in Fuzziness and Soft Computing, 2015, , 361-385.                                          | 0.8 | 0         |
| 50 | On Boolean control networks with maximal topological entropy. Automatica, 2014, 50, 2924-2928.                                                                                | 5.0 | 13        |
| 51 | Maximizing Protein Translation Rate in the Ribosome Flow Model: The Homogeneous Case. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 1184-1195. | 3.0 | 12        |
| 52 | On three generalizations of contraction. , 2014, , .                                                                                                                          |     | 8         |
| 53 | Maximizing protein translation rate in the non-homogeneous ribosome flow model: a convex optimization approach. Journal of the Royal Society Interface, 2014, 11, 20140713.   | 3.4 | 45        |
|    |                                                                                                                                                                               |     |           |

54 Minimum-time control of Boolean networks: An algebraic approach. , 2014, , .

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Entrainment to Periodic Initiation and Transition Rates in a Computational Model for Gene<br>Translation. PLoS ONE, 2014, 9, e96039.                                                                                 | 2.5 | 65        |
| 56 | Mathematical analysis of a flying capacitor converter: a sampledâ€data modeling approach.<br>International Journal of Circuit Theory and Applications, 2013, 41, 682-700.                                            | 2.0 | 6         |
| 57 | Observability of Boolean networks: A graph-theoretic approach. Automatica, 2013, 49, 2351-2362.                                                                                                                      | 5.0 | 182       |
| 58 | Symbolic dynamics of Boolean control networks. Automatica, 2013, 49, 2525-2530.                                                                                                                                      | 5.0 | 45        |
| 59 | Minimum-Time Control of Boolean Networks. SIAM Journal on Control and Optimization, 2013, 51, 2869-2892.                                                                                                             | 2.1 | 140       |
| 60 | Optimal switching between two linear consensus protocols. , 2013, , .                                                                                                                                                |     | 0         |
| 61 | Explicit Expression for the Steady-State Translation Rate in the Infinite-Dimensional Homogeneous<br>Ribosome Flow Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10,<br>1322-1328. | 3.0 | 28        |
| 62 | Ribosome flow model with positive feedback. Journal of the Royal Society Interface, 2013, 10, 20130267.                                                                                                              | 3.4 | 47        |
| 63 | Stability analysis of positive bilinear control systems: A variational approach. , 2013, , .                                                                                                                         |     | 3         |
| 64 | Stability Analysis of the Ribosome Flow Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1545-1552.                                                                                | 3.0 | 68        |
| 65 | A Maximum Principle for the Stability Analysis of Positive Bilinear Control Systems with Applications to Positive Linear Switched Systems. SIAM Journal on Control and Optimization, 2012, 50, 2193-2215.            | 2.1 | 28        |
| 66 | On the Steady-State Distribution in the Homogeneous Ribosome Flow Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1724-1736.                                                      | 3.0 | 26        |
| 67 | Nice-reachability results for discrete-time linear switched systems with applications to stability under arbitrary switching laws. , 2012, , .                                                                       |     | Ο         |
| 68 | Explicit construction of a Barabanov norm for a class of positive planar discrete-time linear switched systems. Automatica, 2012, 48, 95-101.                                                                        | 5.0 | 10        |
| 69 | Controllability of Boolean control networks via the Perron–Frobenius theory. Automatica, 2012, 48, 1218-1223.                                                                                                        | 5.0 | 305       |
| 70 | A Maximum Principle for Single-Input Boolean Control Networks. IEEE Transactions on Automatic<br>Control, 2011, 56, 913-917.                                                                                         | 5.7 | 238       |
| 71 | Knowledge extraction from a class of support vector machines using the fuzzy all-permutations rule-base. , 2011, , .                                                                                                 |     | 2         |
| 72 | Analysis of Discrete-Time Linear Switched Systems: A Variational Approach. SIAM Journal on Control<br>and Optimization, 2011, 49, 808-829.                                                                           | 2.1 | 29        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A second-order maximum principle for discrete-time bilinear control systems with applications to discrete-time linear switched systems. Automatica, 2011, 47, 1489-1495.                                                  | 5.0 | 26        |
| 74 | Nice Reachability Results for Discrete–Time Linear Switched Systems*. IFAC Postprint Volumes IPPV /<br>International Federation of Automatic Control, 2010, 43, 173-178.                                                  | 0.4 | 0         |
| 75 | A Second-Order Optimality Condition for the Most Destabilizing Control of a Discrete-Time Bilinear<br>Control System*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010,<br>43, 272-277. | 0.4 | 1         |
| 76 | Analysis of artificial neural network learning near temporary minima: A fuzzy logic approach. Fuzzy<br>Sets and Systems, 2010, 161, 2569-2584.                                                                            | 2.7 | 7         |
| 77 | A simplification of the Agrachev–Gamkrelidze second-order variation for bang–bang controls.<br>Systems and Control Letters, 2010, 59, 25-32.                                                                              | 2.3 | 8         |
| 78 | The Low-Frequency Distortion in D-Class Amplifiers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57, 772-776.                                                                                      | 3.0 | 15        |
| 79 | Mathematical modeling of the lambda switch: A fuzzy logic approach. Journal of Theoretical Biology,<br>2009, 260, 475-489.                                                                                                | 1.7 | 8         |
| 80 | Extracting symbolic knowledge from recurrent neural networks—A fuzzy logic approach. Fuzzy Sets<br>and Systems, 2009, 160, 145-161.                                                                                       | 2.7 | 17        |
| 81 | On the analysis of nonlinear nilpotent switched systems using the Hall–Sussmann system. Systems and Control Letters, 2009, 58, 766-772.                                                                                   | 2.3 | 9         |
| 82 | On the Stability of Positive Linear Switched Systems Under Arbitrary Switching Laws. IEEE<br>Transactions on Automatic Control, 2009, 54, 897-899.                                                                        | 5.7 | 163       |
| 83 | Stability Analysis of Positive Linear Switched Systems: A Variational Approach. IFAC Postprint Volumes<br>IPPV / International Federation of Automatic Control, 2009, 42, 31-35.                                          | 0.4 | 5         |
| 84 | Root-mean-square gains of switched linear systems: A variational approach. Automatica, 2008, 44,<br>2398-2402.                                                                                                            | 5.0 | 66        |
| 85 | Biomimicry and Fuzzy Modeling: A Match Made in Heaven. IEEE Computational Intelligence Magazine,<br>2008, 3, 38-48.                                                                                                       | 3.2 | 18        |
| 86 | A New Approach to Knowledge-Based Design of Recurrent Neural Networks. IEEE Transactions on<br>Neural Networks, 2008, 19, 1389-1401.                                                                                      | 4.2 | 10        |
| 87 | A Counterexample to a Conjecture of Gurvits on Switched Systems. IEEE Transactions on Automatic Control, 2007, 52, 1123-1126.                                                                                             | 5.7 | 18        |
| 88 | Knowledge Extraction From Neural Networks Using the All-Permutations Fuzzy Rule Base: The LED<br>Display Recognition Problem. IEEE Transactions on Neural Networks, 2007, 18, 925-931.                                    | 4.2 | 19        |
| 89 | Nicholson's blowflies revisited: A fuzzy modeling approach. Fuzzy Sets and Systems, 2007, 158, 1083-1096.                                                                                                                 | 2.7 | 12        |
| 90 | Third-order nilpotency, nice reachability and asymptotic stability. Journal of Differential Equations, 2007, 233, 136-150.                                                                                                | 2.2 | 39        |

| #   | Article                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The Fuzzy Ant. IEEE Computational Intelligence Magazine, 2007, 2, 18-28.                                                                        | 3.2 | 17        |
| 92  | Mathematical Modeling of Natural Phenomena: A Fuzzy Logic Approach. , 2007, , 113-134.                                                          |     | 3         |
| 93  | Stability analysis of switched systems using variational principles: An introduction. Automatica, 2006, 42, 2059-2077.                          | 5.0 | 236       |
| 94  | Lie-algebraic stability conditions for nonlinear switched systems and differential inclusions. Systems and Control Letters, 2006, 55, 8-16.     | 2.3 | 99        |
| 95  | A Counter Example to a Conjecture of Gurvits on Switched Systems. , 2006, , .                                                                   |     | 2         |
| 96  | How does the Dendrocoleum lacteum orient to light? A fuzzy modeling approach. Fuzzy Sets and Systems, 2005, 155, 236-251.                       | 2.7 | 11        |
| 97  | Are Artificial Neural Networks White Boxes?. IEEE Transactions on Neural Networks, 2005, 16, 844-852.                                           | 4.2 | 79        |
| 98  | Mathematical modeling of observed natural behavior: a fuzzy logic approach. Fuzzy Sets and Systems, 2004, 146, 437-450.                         | 2.7 | 45        |
| 99  | The problem of absolute stability: a dynamic programming approach. Automatica, 2004, 40, 1247-1252.                                             | 5.0 | 17        |
| 100 | NEURAL NETWORKS=FUZZY RULE BASES. , 2004, , .                                                                                                   |     | 2         |
| 101 | Stability Analysis of Second-Order Switched Homogeneous Systems. SIAM Journal on Control and Optimization, 2002, 41, 1609-1625.                 | 2.1 | 56        |
| 102 | Some nonlinear optimal control problems with closed-form solutions. International Journal of Robust and Nonlinear Control, 2001, 11, 1365-1374. | 3.7 | 13        |
| 103 | Fuzzy Lyapunov-based approach to the design of fuzzy controllers. Fuzzy Sets and Systems, 1999, 106,<br>49-59.                                  | 2.7 | 89        |