
Giovanni Tosi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1589821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunneling Nanotubes: A New Target for Nanomedicine?. International Journal of Molecular Sciences, 2022, 23, 2237.	1.8	11
2	Applications of the ROS-Responsive Thioketal Linker for the Production of Smart Nanomedicines. Polymers, 2022, 14, 687.	2.0	33
3	Glioblastoma Multiforme Selective Nanomedicines for Improved Anti-Cancer Treatments. Pharmaceutics, 2022, 14, 1450.	2.0	7
4	Insights into kinetics, release, and behavioral effects of brain-targeted hybrid nanoparticles for cholesterol delivery in Huntington's disease. Journal of Controlled Release, 2021, 330, 587-598.	4.8	33
5	Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer's disease: from current to future challenges. Journal of Nanobiotechnology, 2021, 19, 122.	4.2	60
6	Nerve Growth Factor Biodelivery: A Limiting Step in Moving Toward Extensive Clinical Application?. Frontiers in Neuroscience, 2021, 15, 695592.	1.4	17
7	Microfluidic Technology for the Production of Hybrid Nanomedicines. Pharmaceutics, 2021, 13, 1495.	2.0	9
8	Nanomedicines for brain diseases: where we are and where we are going. Therapeutic Delivery, 2021, 12, 631-635.	1.2	1
9	Glioblastoma: State of the Art of Treatments and Applications of Polymeric and Lipidic Nanomedicines. Neuromethods, 2021, , 1-61.	0.2	1
10	Tween® Preserves Enzyme Activity and Stability in PLGA Nanoparticles. Nanomaterials, 2021, 11, 2946.	1.9	11
11	Molecular characterization of a Marek's disease virus strain detected in tumour-bearing turkeys. Avian Pathology, 2020, 49, 202-207.	0.8	8
12	Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opinion on Drug Delivery, 2020, 17, 23-32.	2.4	83
13	Enzyme Stability in Nanoparticle Preparations Part 1: Bovine Serum Albumin Improves Enzyme Function. Molecules, 2020, 25, 4593.	1.7	14
14	Delivering the power of nanomedicine to patients today. Journal of Controlled Release, 2020, 326, 164-171.	4.8	219
15	Synthesis, Characterization, and In Vitro Studies of an Reactive Oxygen Species (ROS)-Responsive Methoxy Polyethylene Glycol-Thioketal-Melphalan Prodrug for Glioblastoma Treatment. Frontiers in Pharmacology, 2020, 11, 574.	1.6	21
16	Novel peptide-conjugated nanomedicines for brain targeting: In vivo evidence. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102226.	1.7	20
17	Drug delivery across the blood–brain barrier: recent advances in the use of nanocarriers. Nanomedicine, 2020, 15, 205-214.	1.7	101
18	PLGA-PEG-ANG-2 Nanoparticles for Blood–Brain Barrier Crossing: Proof-of-Concept Study. Pharmaceutics, 2020, 12, 72.	2.0	46

#	Article	IF	CITATIONS
19	Investigating Novel Syntheses of a Series of Unique Hybrid PLGA-Chitosan Polymers for Potential Therapeutic Delivery Applications. Polymers, 2020, 12, 823.	2.0	16
20	Nanomedicine Against Aβ Aggregation by β–Sheet Breaker Peptide Delivery: In Vitro Evidence. Pharmaceutics, 2019, 11, 572.	2.0	18
21	ROS-responsive "smart―polymeric conjugate: Synthesis, characterization and proof-of-concept study. International Journal of Pharmaceutics, 2019, 570, 118655.	2.6	31
22	Targeting Brain Disease in MPSII: Preclinical Evaluation of IDS-Loaded PLGA Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 2014.	1.8	47
23	Nanomedicine in Alzheimer's disease: Amyloid beta targeting strategy. Progress in Brain Research, 2019, 245, 57-88.	0.9	39
24	Antioxidant activity and photostability assessment of trans-resveratrol acrylate microspheres. Pharmaceutical Development and Technology, 2019, 24, 222-234.	1.1	13
25	In vitro treatment of congenital disorder of glycosylation type Ia using PLGA nanoparticles loaded with GDP‑Man. International Journal of Molecular Medicine, 2019, 44, 262-272.	1.8	4
26	Qualitative and semiquantitative analysis of the protein coronas associated to different functionalized nanoparticles. Nanomedicine, 2018, 13, 407-422.	1.7	11
27	Reduced plaque size and inflammation in the APP23 mouse model for Alzheimer's disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery. Journal of Trace Elements in Medicine and Biology, 2018, 49, 210-221.	1.5	64
28	Hybrid nanoparticles as a new technological approach to enhance the delivery of cholesterol into the brain. International Journal of Pharmaceutics, 2018, 543, 300-310.	2.6	26
29	I14â€Translational potential of cholesterol supplementation-based strategies for huntington's disease. , 2018, , .		1
30	Application of metal â^' organic frameworks. Polymer International, 2017, 66, 731-744.	1.6	163
31	Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates. International Journal of Pharmaceutics, 2017, 526, 413-424.	2.6	127
32	Protein corona and nanoparticles: how can we investigate on?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1467.	3.3	93
33	Apoferritin nanocage as streptomycin drug reservoir: Technological optimization of a new drug delivery system. International Journal of Pharmaceutics, 2017, 518, 281-288.	2.6	14
34	Current Strategies for the Delivery of Therapeutic Proteins and Enzymes to Treat Brain Disorders. International Review of Neurobiology, 2017, 137, 1-28.	0.9	27
35	Protein cage nanostructure as drug delivery system: magnifying glass on apoferritin. Expert Opinion on Drug Delivery, 2017, 14, 825-840.	2.4	47
36	Nanotechnology-based drug delivery systems for Alzheimer's disease management: Technical, industrial, and clinical challenges. Journal of Controlled Release, 2017, 245, 95-107.	4.8	156

#	Article	IF	CITATIONS
37	L16â€ldentifying a therapeutic regimen for cholesterol delivery to huntington's disease brain. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A95.2-A95.	0.9	0
38	Apoferritin nanocage as drug reservoir: is it a reliable drug delivery system?. Expert Opinion on Drug Delivery, 2016, 13, 1341-1343.	2.4	16
39	Nanoparticle transport across the blood brain barrier. Tissue Barriers, 2016, 4, e1153568.	1.6	121
40	PEGylated siRNA lipoplexes for silencing of BLIMP-1 in Primary Effusion Lymphoma: In vitro evidences of antitumoral activity. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 99, 7-17.	2.0	17
41	The "fate―of polymeric and lipid nanoparticles for brain delivery and targeting: Strategies and mechanism of blood–brain barrier crossing and trafficking into the central nervous system. Journal of Drug Delivery Science and Technology, 2016, 32, 66-76.	1.4	58
42	Targeted Polymeric Nanoparticles for Brain Delivery of High Molecular Weight Molecules in Lysosomal Storage Disorders. PLoS ONE, 2016, 11, e0156452.	1.1	72
43	Potential Use of Nanomedicine for Drug Delivery Across the Blood-Brain Barrier in Healthy and Diseased Brain. CNS and Neurological Disorders - Drug Targets, 2016, 15, 1079-1091.	0.8	8
44	Cholesterolâ€loaded nanoparticles ameliorate synaptic and cognitive function in <scp>H</scp> untington's disease mice. EMBO Molecular Medicine, 2015, 7, 1547-1564.	3.3	84
45	Antineoplastic effects of liposomal short interfering RNA treatment targeting BLIMP1/PRDM1 in primary effusion lymphoma. Haematologica, 2015, 100, e467-e470.	1.7	9
46	Endocytosis of Nanomedicines: The Case of Glycopeptide Engineered PLGA Nanoparticles. Pharmaceutics, 2015, 7, 74-89.	2.0	46
47	PEG-g-chitosan nanoparticles functionalized with the monoclonal antibody OX26 for brain drug targeting. Nanomedicine, 2015, 10, 1735-1750.	1.7	60
48	Nanomedicine and neurodegenerative disorders: so close yet so far. Expert Opinion on Drug Delivery, 2015, 12, 1041-1044.	2.4	15
49	Use of Polylactide-Co-Glycolide-Nanoparticles for Lysosomal Delivery of a Therapeutic Enzyme in Glycogenosis Type II Fibroblasts. Journal of Nanoscience and Nanotechnology, 2015, 15, 2657-2666.	0.9	20
50	PLGA Nanoparticles Loaded Cerebrolysin: Studies on Their Preparation and Investigation of the Effect of Storage and Serum Stability with Reference to Traumatic Brain Injury. Molecular Neurobiology, 2015, 52, 899-912.	1.9	57
51	Functionalization of liposomes: microscopical methods for preformulative screening. Journal of Liposome Research, 2015, 25, 150-156.	1.5	6
52	Emerging Use of Nanotechnology in the Treatment of Neurological Disorders. Current Pharmaceutical Design, 2015, 21, 3111-3130.	0.9	28
53	Application of Polymeric Nanoparticles for CNS Targeted Zinc Delivery In Vivo. CNS and Neurological Disorders - Drug Targets, 2015, 14, 1041-1053.	0.8	12
54	Insight on the fate of CNS-targeted nanoparticles. Part I: Rab5-dependent cell-specific uptake and distribution. Journal of Controlled Release, 2014, 174, 195-201.	4.8	63

#	Article	IF	CITATIONS
55	Insight on the fate of CNS-targeted nanoparticles. Part II: Intercellular neuronal cell-to-cell transport. Journal of Controlled Release, 2014, 177, 96-107.	4.8	48
56	Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release. International Journal of Pharmaceutics, 2014, 471, 349-357.	2.6	17
57	Detection of PLGA-based nanoparticles at a single-cell level by synchrotron radiation FTIR spectromicroscopy and correlation with X-ray fluorescence microscopy. International Journal of Nanomedicine, 2014, 9, 2791.	3.3	18
58	Nanotechnology and Alzheimer's Disease: What has been Done and What to Do'. Current Medicinal Chemistry, 2014, 21, 4169-4185.	1.2	20
59	Poly (D,L-Lactide-co-Glycolide) Nanoparticles Loaded with Cerebrolysin Display Neuroprotective Activity in a Rat Model of Concussive Head Injury. CNS and Neurological Disorders - Drug Targets, 2014, 13, 1475-1482.	0.8	21
60	Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems. Topics in Medicinal Chemistry, 2013, , 71-89.	0.4	22
61	Brain targeting with polymeric nanoparticles: which administration route should we take?. Nanomedicine, 2013, 8, 1361-1363.	1.7	16
62	AFM and TEM characterization of siRNAs lipoplexes: A combinatory tools to predict the efficacy of complexation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 459-466.	2.3	11
63	Biodegradable device applied in flatfoot surgery: Comparative studies between clinical and technological aspects of removed screws. Materials Science and Engineering C, 2013, 33, 1773-1782.	3.8	12
64	Brain-targeted polymeric nanoparticles: <i>in vivo</i> evidence of different routes of administration in rodents. Nanomedicine, 2013, 8, 1373-1383.	1.7	26
65	Potential Use of Polymeric Nanoparticles for Drug Delivery Across the Blood-Brain Barrier. Current Medicinal Chemistry, 2013, 20, 2212-2225.	1.2	113
66	Nanomedicine: the future for advancing medicine and neuroscience. Nanomedicine, 2012, 7, 1113-1116.	1.7	21
67	Chemico-physical investigation of tenofovir loaded polymeric nanoparticles. International Journal of Pharmaceutics, 2012, 436, 753-763.	2.6	25
68	Neurotrophic Factors and Neurodegenerative Diseases. International Review of Neurobiology, 2012, 102, 207-247.	0.9	26
69	Can leptin-derived sequence-modified nanoparticles be suitable tools for brain delivery?. Nanomedicine, 2012, 7, 365-382.	1.7	44
70	Application of poly-L-lactide screws in flat foot surgery: histological and radiological aspects of bio-absorption of degradable devices. Histology and Histopathology, 2012, 27, 485-96.	0.5	8
71	Advances and Perspectives for Central Nervous System Drug Delivery: The Interface Between Nanotechnology and Neuroscience. Journal of Nanoneuroscience, 2012, 2, 1-4.	0.5	2
72	The Bridge Between Nanotechnology and Neuroscience: Neuro-Nanomedicine. Journal of Nanoneuroscience, 2012, 2, 20-26.	0.5	2

#	Article	IF	CITATIONS
73	The loading of labelled antibody-engineered nanoparticles with Indinavir increases itsin vitroefficacy againstCryptosporidium parvum. Parasitology, 2011, 138, 1384-1391.	0.7	7
74	Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood–brain barrier. Nanomedicine, 2011, 6, 423-436.	1.7	80
75	Development of Novel Zn2+ Loaded Nanoparticles Designed for Cell-Type Targeted Drug Release in CNS Neurons: In Vitro Evidences. PLoS ONE, 2011, 6, e17851.	1.1	46
76	AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. International Journal of Nanomedicine, 2011, 6, 557.	3.3	150
77	NIR-labeled nanoparticles engineered for brain targeting: in vivo optical imaging application and fluorescent microscopy evidences. Journal of Neural Transmission, 2011, 118, 145-153.	1.4	45
78	Novel polymeric/lipidic hybrid systems (PLHs) for effective Cidofovir delivery: Preparation, characterization and comparative in vitro study with polymeric particles and liposomes. International Journal of Pharmaceutics, 2011, 413, 220-228.	2.6	10
79	Sialic acid as a potential approach for the protection and targeting of nanocarriers. Expert Opinion on Drug Delivery, 2011, 8, 921-937.	2.4	31
80	Sialic acid and glycopeptides conjugated PLGA nanoparticles for central nervous system targeting: In vivo pharmacological evidence and biodistribution. Journal of Controlled Release, 2010, 145, 49-57.	4.8	110
81	Cidofovir-loaded liposomes: an intro-study using BCBL-1 cell line as a model for primary effusion lymphoma. European Journal of Pharmaceutical Sciences, 2010, 41, 254-264.	1.9	16
82	PLGA nanoparticles surface decorated with the sialic acid, N-acetylneuraminic acid. Biomaterials, 2010, 31, 3395-3403.	5.7	64
83	Immunoliposomal systems targeting primary effusion lymphoma: <i>in vitro</i> study. Nanomedicine, 2010, 5, 1051-1064.	1.7	8
84	Nuclear localization of cationic solid lipid nanoparticles containing Protamine as transfection promoter. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 384-393.	2.0	23
85	Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 369-377.	1.7	133
86	Collagen-based modified membranes for tissue engineering: Influence of type and molecular weight of GAGs on cell proliferation. International Journal of Pharmaceutics, 2009, 378, 108-115.	2.6	25
87	Colloidal systems for CNS drug delivery. Progress in Brain Research, 2009, 180, 35-69.	0.9	32
88	AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes. Journal of Liposome Research, 2009, 19, 59-67.	1.5	25
89	Flow cytometry and live confocal analysis for the evaluation of the uptake and intracellular distribution of FITC-ODN into HaCaT cells. Journal of Liposome Research, 2009, 19, 241-251.	1.5	6
90	Glycopeptide-Decorated Nanoparticles as Drug Carriers for CNS: Effects of Surface Coverage and Carbohydrate Type. Journal of Nanoneuroscience, 2009, 1, 152-157.	0.5	0

#	Article	IF	CITATIONS
91	Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opinion on Drug Delivery, 2008, 5, 155-174.	2.4	189
92	Application of atomic force microscopy to characterize liposomes as drug and gene carriers. Talanta, 2007, 73, 12-22.	2.9	78
93	Intact collagen and atelocollagen sponges: Characterization and ESEM observation. Materials Science and Engineering C, 2007, 27, 802-810.	3.8	13
94	Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. Journal of Controlled Release, 2007, 122, 1-9.	4.8	217
95	DOTAP/UDCA vesicles: novel approach in oligonucleotide delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2007, 3, 1-13.	1.7	12
96	Nanoparticulate drug carriers based on hybrid poly(d,l-lactide-co-glycolide)-dendron structures. Biomaterials, 2006, 27, 4635-4645.	5.7	68
97	Nanoparticle formulation may affect the stabilization of an antiischemic prodrug. International Journal of Pharmaceutics, 2006, 307, 103-113.	2.6	20
98	PLA-microparticles formulated by means a thermoreversible gel able to modify protein encapsulation and release without being co-encapsulated. International Journal of Pharmaceutics, 2006, 323, 131-138.	2.6	30
99	Vegetable cells in Papanicolaou-stained cervical smears. Diagnostic Cytopathology, 2006, 34, 45-49.	0.5	10
100	Conjugated poly(D,L-lactide-co-glycolide) for the preparation of in vivo detectable nanoparticles. Biomaterials, 2005, 26, 4189-4195.	5.7	42
101	Atomic force microscopy and photon correlation spectroscopy: Two techniques for rapid characterization of liposomes. European Journal of Pharmaceutical Sciences, 2005, 25, 81-89.	1.9	112
102	Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. Journal of Controlled Release, 2005, 108, 84-96.	4.8	202
103	Liposome-oligonucleotides interaction for in vitro uptake by COS I and HaCaT cells. Journal of Drug Targeting, 2005, 13, 295-304.	2.1	9
104	Ketorolac Tromethamine Liposomes: Encapsulation and Release Studies. Journal of Liposome Research, 2005, 15, 175-185.	1.5	18
105	Biocatalytic Asymmetric Synthesis of (S)- and (R)-Timolol. Synthesis, 2004, 2004, 1625-1628.	1.2	2
106	Chemo-enzymatic Synthesis of Levodropropizine ChemInform, 2004, 35, no.	0.1	0
107	Chemo-enzymatic synthesis of levodropropizine. Il Farmaco, 2003, 58, 1029-1032.	0.9	3
108	Nanotechonology for Drug Targeting. Advances in Science and Technology, 0, , .	0.2	0