Kate E Langwig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1589558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Emerging Disease Causes Regional Population Collapse of a Common North American Bat Species. Science, 2010, 329, 679-682.	12.6	735
2	Sociality, densityâ€dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, whiteâ€nose syndrome. Ecology Letters, 2012, 15, 1050-1057.	6.4	299
3	Disease alters macroecological patterns of <scp>N</scp> orth <scp>A</scp> merican bats. Global Ecology and Biogeography, 2015, 24, 741-749.	5.8	206
4	Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142335.	2.6	181
5	Contextâ€dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment, 2015, 13, 195-202.	4.0	147
6	Bacteria Isolated from Bats Inhibit the Growth of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome. PLoS ONE, 2015, 10, e0121329.	2.5	120
7	Ecology and impacts of white-nose syndrome on bats. Nature Reviews Microbiology, 2021, 19, 196-210.	28.6	107
8	Pathogen dynamics during invasion and establishment of whiteâ€nose syndrome explain mechanisms of host persistence. Ecology, 2017, 98, 624-631.	3.2	100
9	Drivers of variation in species impacts for a multi-host fungal disease of bats. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150456.	4.0	92
10	Invasion Dynamics of White-Nose Syndrome Fungus, Midwestern United States, 2012–2014. Emerging Infectious Diseases, 2015, 21, 1023-1026.	4.3	88
11	Resistance in persisting bat populations after white-nose syndrome invasion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160044.	4.0	86
12	Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment. Frontiers in Microbiology, 2016, 7, 1753.	3.5	81
13	Long-Term Persistence of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome, in the Absence of Bats. EcoHealth, 2015, 12, 330-333.	2.0	68
14	Risk factors associated with mortality from white-nose syndrome among hibernating bat colonies. Biology Letters, 2011, 7, 950-953.	2.3	62
15	Little Brown Myotis Persist Despite Exposure to White-Nose Syndrome. Journal of Fish and Wildlife Management, 2011, 2, 190-195.	0.9	62
16	Efficacy of a probiotic bacterium to treat bats affected by the disease whiteâ€nose syndrome. Journal of Applied Ecology, 2017, 54, 701-708.	4.0	59
17	Widespread Bat White-Nose Syndrome Fungus, Northeastern China. Emerging Infectious Diseases, 2015, 22, 140-142.	4.3	54
18	Cryptic connections illuminate pathogen transmission within community networks. Nature, 2018, 563, 710-713	27.8	54

KATE E LANGWIG

#	ARTICLE	IF	CITATIONS
19	Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7255-7262.	7.1	53
20	Field trial of a probiotic bacteria to protect bats from white-nose syndrome. Scientific Reports, 2019, 9, 9158.	3.3	50
21	Moving Beyond Too Little, Too Late: Managing Emerging Infectious Diseases in Wild Populations Requires International Policy and Partnerships. EcoHealth, 2015, 12, 404-407.	2.0	45
22	Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152861.	2.6	40
23	Vaccine Effects on Heterogeneity in Susceptibility and Implications for Population Health Management. MBio, 2017, 8, .	4.1	32
24	Integral Projection Models for host–parasite systems with an application to amphibian chytrid fungus. Methods in Ecology and Evolution, 2016, 7, 1182-1194.	5.2	28
25	Continued preference for suboptimal habitat reduces bat survival with white-nose syndrome. Nature Communications, 2021, 12, 166.	12.8	19
26	Limited available evidence supports theoretical predictions of reduced vaccine efficacy at higher exposure dose. Scientific Reports, 2019, 9, 3203.	3.3	18
27	On the Fly: Interactions Between Birds, Mosquitoes, and Environment That Have Molded West Nile Virus Genomic Structure Over Two Decades. Journal of Medical Entomology, 2019, 56, 1467-1474.	1.8	17
28	Host traits and environment interact to determine persistence of bat populations impacted by whiteâ€nose syndrome. Ecology Letters, 2022, 25, 483-497.	6.4	15
29	Impact of censusing and research on wildlife populations. Conservation Science and Practice, 2020, 2, e264.	2.0	10
30	Mobility and infectiousness in the spatial spread of an emerging fungal pathogen. Journal of Animal Ecology, 2021, 90, 1134-1141.	2.8	10