VÃÃ-tor Mg Correia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1589540/publications.pdf

Version: 2024-02-01

218677 254184 56 1,928 26 43 citations g-index h-index papers 57 57 57 2281 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and Fabrication of Printed Human Skin Model Equivalent Circuit: A Tool for Testing Biomedical Electrodes without Human Trials. Advanced Engineering Materials, 2022, 24, .	3.5	3
2	Electroactive functional microenvironments from bioactive polymers: A new strategy to address cancer., 2022, 137, 212849.		4
3	Allâ€Printed Smart Label with Integrated Humidity Sensors and Power Supply. Advanced Engineering Materials, 2021, 23, 2001229.	3.5	7
4	Additive manufacturing of multifunctional materials., 2021,, 25-42.		1
5	Environmentally Friendly Grapheneâ€Based Conductive Inks for Multitouch Capacitive Sensing Surfaces. Advanced Materials Interfaces, 2021, 8, 2100578.	3.7	16
6	Triboelectric Energy Harvesting Response of Different Polymer-Based Materials. Materials, 2020, 13, 4980.	2.9	16
7	Functional Piezoresistive Polymerâ€Composites Based on Polycarbonate and Polylactic Acid for Deformation Sensing Applications. Macromolecular Materials and Engineering, 2020, 305, 2000379.	3.6	8
8	Physically Active Bioreactors for Tissue Engineering Applications. Advanced Biology, 2020, 4, e2000125.	3.0	29
9	Magnetically Activated Electroactive Microenvironments for Skeletal Muscle Tissue Regeneration. ACS Applied Bio Materials, 2020, 3, 4239-4252.	4.6	39
10	Polymer-based actuators: back to the future. Physical Chemistry Chemical Physics, 2020, 22, 15163-15182.	2.8	41
11	Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategies. Sensors, 2020, 20, 3340.	3.8	21
12	Silk fibroin magnetoactive nanocomposite films and membranes for dynamic bone tissue engineering strategies. Materialia, 2020, 12, 100709.	2.7	24
13	Electroactive poly(vinylidene fluoride)-based materials: recent progress, challenges, and opportunities. , 2020 , , $1-43$.		7
14	All-Printed Piezoresistive Sensor Matrix with Organic Thin-Film Transistors as a Switch for Crosstalk Reduction. ACS Applied Electronic Materials, 2020, 2, 1470-1477.	4.3	9
15	Magnetic Proximity Sensor Based on Magnetoelectric Composites and Printed Coils. Materials, 2020, 13, 1729.	2.9	17
16	Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45265-45275.	8.0	101
17	All-printed multilayer materials with improved magnetoelectric response. Journal of Materials Chemistry C, 2019, 7, 5394-5400.	5. 5	34
18	Development of a contactless DC current sensor with high linearity and sensitivity based on the magnetoelectric effect. Smart Materials and Structures, 2018, 27, 065012.	3.5	30

#	Article	IF	CITATIONS
19	Printed Wheatstone bridge with embedded polymer based piezoresistive sensors for strain sensing applications. Additive Manufacturing, 2018, 20, 119-125.	3.0	31
20	Water based scintillator ink for printed X-ray radiation detectors. Polymer Testing, 2018, 69, 26-31.	4.8	5
21	Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12904-12912.	8.0	32
22	Polymer-based smart materials by printing technologies: Improving application and integration. Additive Manufacturing, 2018, 21, 269-283.	3.0	106
23	Stretchable scintillator composites for indirect X-ray detectors. Composites Part B: Engineering, 2018, 133, 226-231.	12.0	14
24	Design and fabrication of multilayer inkjet-printed passive components for printed electronics circuit development. Journal of Manufacturing Processes, 2018, 31, 364-371.	5.9	58
25	Piezoelectric Polymers and Polymer Composites for Sensors and Actuators. , 2018, , .		0
26	Polymer Nanocomposite-Based Strain Sensors with Tailored Processability and Improved Device Integration. ACS Applied Nano Materials, 2018, 1, 3015-3025.	5.0	32
27	Fabrication and Characterization of High-Performance Polymer-Based Magnetoelectric DC Magnetic Field Sensors Devices. IEEE Transactions on Industrial Electronics, 2017, 64, 4928-4934.	7.9	36
28	Piezoresistive Polymer-Based Materials for Real-Time Assessment of the Stump/Socket Interface Pressure in Lower Limb Amputees. IEEE Sensors Journal, 2017, 17, 2182-2190.	4.7	23
29	Development of water-based printable piezoresistive sensors for large strain applications. Composites Part B: Engineering, 2017, 112, 344-352.	12.0	70
30	Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications. Sensors, 2017, 17, 2786.	3.8	8
31	Optimized anisotropic magnetoelectric response of Fe _{61.6} Co _{16.4} Si _{10.8} B _{11.2} /PVDF/Fe _{61.6} Co <sub 055050.<="" 2016,="" 25,="" ac="" and="" dc="" field="" for="" magnetic="" materials="" sensing.="" smart="" structures,="" td=""><td>>1.5.4<td>ıb3£i</td></td></sub>	> 1.5. 4 <td>ıb3£i</td>	ıb3 £ i
32	Mechanical fatigue performance of PCLâ€chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 330-338.	3.4	9
33	Green solvent approach for printable large deformation thermoplastic elastomer based piezoresistive sensors and their suitability for biomedical applications. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2092-2103.	2.1	50
34	All-inkjet-printed low-pass filters with adjustable cutoff frequency consisting of resistors, inductors and transistors for sensor applications. Organic Electronics, 2016, 38, 205-212.	2.6	38
35	Electronic optimization for an energy harvesting system based on magnetoelectric Metglas/poly(vinylidene fluoride)/Metglas composites. Smart Materials and Structures, 2016, 25, 085028.	3.5	39
36	Increasing X-ray to visible transduction performance of Gd2O3:Eu3+PVDF composites by PPO/POPOP addition. Composites Part B: Engineering, 2016, 91, 610-614.	12.0	11

#	Article	IF	CITATIONS
37	Characterization of Metglas/poly(vinylidene fluoride)/Metglas magnetoelectric laminates for AC/DC magnetic sensor applications. Materials and Design, 2016, 92, 906-910.	7. O	35
38	Proving the suitability of magnetoelectric stimuli for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2016, 140, 430-436.	5.0	126
39	Design and validation of a biomechanical bioreactor for cartilage tissue culture. Biomechanics and Modeling in Mechanobiology, 2016, 15, 471-478.	2.8	13
40	Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 2172-2175.	4.0	148
41	Energy harvesting performance of BaTiO3/poly(vinylidene fluoride–trifluoroethylene) spin coated nanocomposites. Composites Part B: Engineering, 2015, 72, 130-136.	12.0	96
42	Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors. Applied Physics A: Materials Science and Processing, 2015, 121, 581-587.	2.3	21
43	Gd2O3:Eu Nanoparticle-Based Poly(vinylidene fluoride) Composites for Indirect X-ray Detection. Journal of Electronic Materials, 2015, 44, 129-135.	2.2	22
44	Piezoresistive sensors for force mapping of hip-prostheses. Sensors and Actuators A: Physical, 2013, 195, 133-138.	4.1	10
45	Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. Sensors and Actuators A: Physical, 2013, 196, 55-62.	4.1	138
46	Development of inkjet printed strain sensors. Smart Materials and Structures, 2013, 22, 105028.	3.5	81
47	Design and Development of a Prototype Electrotherapy Device. Open Biomedical Engineering Journal, 2013, 7, 100-108.	0.5	0
48	Fiber average size and distribution dependence on the electrospinning parameters of poly(vinylidene) Tj ETQq0 0 Science and Processing, 2012, 109, 685-691.	0 rgBT /Ον 2.3	verlock 10 Tf 39
49	Optimization of piezoelectric ultrasound emitter transducers for underwater communications. Sensors and Actuators A: Physical, 2012, 184, 141-148.	4.1	36
50	Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Advances, 2012, 2, 11504.	3.6	106
51	Piezoresistive silicon thin film sensor array for biomedical applications. Thin Solid Films, 2011, 519, 4574-4577.	1.8	30
52	Comparative finite element analyses of piezoelectric ceramics and polymers at high frequency for underwater wireless communications. Procedia Engineering, 2010, 5, 99-102.	1.2	12
53	Touchscreen based on acoustic pulse recognition with piezoelectric polymer sensors., 2010,,.		8
54	Dilatometer for characterization of thermal expansion of ceramic samples., 2009,,.		0

VÃfÂŦOR MG CORREIA

#	Article	IF	CITATIONS
55	Sigma-delta A/D converter for CMOS image sensors. , 2009, , .		5
56	Piezoelectric micropump for lab-on-a-chip applications. , 2009, , .		2