Marie-Noëlle Rosso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1589376/publications.pdf

Version: 2024-02-01

21 papers 998 citations

567281 15 h-index 713466 21 g-index

22 all docs 22 docs citations

times ranked

22

1116 citing authors

#	Article	IF	CITATIONS
1	The ectomycorrhizal basidiomycete <i>Laccaria bicolor</i> releases a GH28 polygalacturonase that plays a key role in symbiosis establishment. New Phytologist, 2022, 233, 2534-2547.	7.3	16
2	Plant wastes and sustainable refineries: What can we learn from fungi?. Current Opinion in Green and Sustainable Chemistry, 2022, 34, 100602.	5.9	5
3	Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity. Molecular Biology and Evolution, 2021, 38, 1428-1446.	8.9	72
4	Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environmental Microbiology, 2021, 23, 5716-5732.	3.8	44
5	Evolution of Fungal Carbohydrate-Active Enzyme Portfolios and Adaptation to Plant Cell-Wall Polymers. Journal of Fungi (Basel, Switzerland), 2021, 7, 185.	3.5	38
6	A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material. Journal of Fungi (Basel, Switzerland), 2021, 7, 426.	3 . 5	9
7	Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radical Biology and Medicine, 2021, 169, 187-215.	2.9	9
8	Screening New Xylanase Biocatalysts from the Mangrove Soil Diversity. Microorganisms, 2021, 9, 1484.	3 . 6	3
9	Large-scale phenotyping of 1,000 fungal strains for the degradation of non-natural, industrial compounds. Communications Biology, 2021, 4, 871.	4.4	18
10	A fungal family of lytic polysaccharide monooxygenase-like copper proteins. Nature Chemical Biology, 2020, 16, 345-350.	8.0	63
11	Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus <i>Pycnoporus </i> . DNA Research, 2020, 27, .	3.4	32
12	Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases. Journal of Biological Chemistry, 2019, 294, 17117-17130.	3.4	30
13	Broadâ€specificity GH131 βâ€glucanases are a hallmark of fungi and oomycetes that colonize plants. Environmental Microbiology, 2019, 21, 2724-2739.	3 . 8	18
14	The ectomycorrhizal basidiomycete <i>Laccaria bicolor</i> releases a secreted βâ€1,4 endoglucanase that plays a key role in symbiosis development. New Phytologist, 2018, 220, 1309-1321.	7.3	49
15	Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nature Chemical Biology, 2018, 14, 306-310.	8.0	269
16	Integrative visual omics of the white-rot fungus Polyporus brumalis exposes the biotechnological potential of its oxidative enzymes for delignifying raw plant biomass. Biotechnology for Biofuels, 2018, 11, 201.	6.2	45
17	Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases. Carbohydrate Research, 2017, 448, 155-160.	2.3	48
18	The integrative omics of white-rot fungus Pycnoporus coccineus reveals co-regulated CAZymes for orchestrated lignocellulose breakdown. PLoS ONE, 2017, 12, e0175528.	2.5	64

#	Article	IF	CITATIONS
19	Visual Comparative Omics of Fungi for Plant Biomass Deconstruction. Frontiers in Microbiology, 2016, 7, 1335.	3.5	46
20	Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus. Biotechnology for Biofuels, 2015, 8, 216.	6.2	67
21	Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalisinvolves successive secretion of oxidative and hydrolytic enzymes. Biotechnology for Biofuels, 2014, 7, 143.	6.2	53