
Sandro Carniel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1589105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maritime Anomaly Detection in a Real-World Scenario: <i>Ever Given</i> Grounding in the Suez Canal. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 13904-13910.	4.7	17
2	CMEMS-Based Coastal Analyses: Conditioning, Coupling and Limits for Applications. Frontiers in Marine Science, 2021, 8, .	1.2	13
3	Simulation of a flash-flood event over the Adriatic Sea with a high-resolution atmosphere–ocean–wave coupled system. Scientific Reports, 2021, 11, 9388.	1.6	21
4	Space-Based Global Maritime Surveillance. Part II: Artificial Intelligence and Data Fusion Techniques. IEEE Aerospace and Electronic Systems Magazine, 2021, 36, 30-42.	2.3	14
5	Space-Based Clobal Maritime Surveillance. Part I: Satellite Technologies. IEEE Aerospace and Electronic Systems Magazine, 2021, 36, 8-28.	2.3	21
6	Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water (Switzerland), 2020, 12, 2173.	1.2	46
7	Wind waves in the Adriatic Sea under a severe climate change scenario and implications for the coasts. International Journal of Climatology, 2020, 40, 5389-5406.	1.5	13
8	Assessment of Climate Change Impacts in the North Adriatic Coastal Area. Part I: A Multi-Model Chain for the Definition of Climate Change Hazard Scenarios. Water (Switzerland), 2019, 11, 1157.	1.2	19
9	Coastal accumulation of microplastic particles emitted from the Po River, Northern Italy: Comparing remote sensing and hydrodynamic modelling with in situ sample collections. Marine Pollution Bulletin, 2019, 138, 561-574.	2.3	103
10	Assessment of Climate Change Impacts in the North Adriatic Coastal Area. Part II: Consequences for Coastal Erosion Impacts at the Regional Scale. Water (Switzerland), 2019, 11, 1300.	1.2	18
11	Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea. Atmosphere, 2019, 10, 202.	1.0	30
12	Framing Continental Shelf Waves in the southern Adriatic Sea, a further flushing factor beyond dense water cascading. Scientific Reports, 2018, 8, 660.	1.6	14
13	Massive shelf dense water flow influences plankton community structure and particle transport over long distance. Scientific Reports, 2018, 8, 4554.	1.6	7
14	Coupled Wave-2D Hydrodynamics Modeling at the Reno River Mouth (Italy) under Climate Change Scenarios. Water (Switzerland), 2018, 10, 1380.	1.2	16
15	Wind storminess in the Adriatic Sea in a climate change scenario. Acta Adriatica, 2018, 58, 195-208.	0.2	15
16	Numerical modeling of space-time wave extremes using WAVEWATCH III. Ocean Dynamics, 2017, 67, 535-549.	0.9	24
17	Preface: Oceanographic processes on the continental shelf: observations and modeling. Ocean Science, 2017, 13, 495-501.	1.3	1
18	Sensitivity of a Mediterranean Tropical-Like Cyclone to Different Model Configurations and Coupling Strategies. Atmosphere, 2017, 8, 92.	1.0	59

#	Article	IF	CITATIONS
19	Wave extreme characterization using self-organizing maps. Ocean Science, 2016, 12, 403-415.	1.3	10
20	Optimal index related to the shoreline dynamics during a storm: theÂcase of Jesolo beach. Natural Hazards and Earth System Sciences, 2016, 16, 1107-1122.	1.5	29
21	Turbulence observations in the Gulf of Trieste under moderate wind forcing and different water column stratification. Ocean Science, 2016, 12, 433-449.	1.3	8
22	Interactions among Adriatic continental margin morphology, deep circulation and bedform patterns. Marine Geology, 2016, 375, 82-98.	0.9	36
23	Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event. Ocean Modelling, 2016, 101, 101-112.	1.0	52
24	Multi-view horizon-driven sea plane estimation for stereo wave imaging on moving vessels. Computers and Geosciences, 2016, 95, 105-117.	2.0	6
25	Stereo wave imaging from moving vessels: Practical use and applications. Coastal Engineering, 2016, 109, 114-127.	1.7	34
26	Synthetic Modeling for an Acoustic Exploration System for Physical Oceanography. Journal of Atmospheric and Oceanic Technology, 2016, 33, 191-200.	0.5	2
27	On the use of a coupled ocean–atmosphere–wave model during an extreme cold air outbreak over the Adriatic Sea. Atmospheric Research, 2016, 172-173, 48-65.	1.8	74
28	Off-shelf fluxes across the southern Adriatic margin: Factors controlling dense-water-driven transport phenomena. Marine Geology, 2016, 375, 44-63.	0.9	32
29	Dynamics of particles along the western margin of the Southern Adriatic: Processes involved in transferring particulate matter to the deep basin. Marine Geology, 2016, 375, 28-43.	0.9	46
30	Climate change impacts on marine water quality: The case study of the Northern Adriatic sea. Marine Pollution Bulletin, 2016, 102, 271-282.	2.3	15
31	High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event. Ocean Science, 2015, 11, 909-920.	1.3	78
32	Observation of Extreme Sea Waves in a Space–Time Ensemble. Journal of Physical Oceanography, 2015, 45, 2261-2275.	0.7	75
33	Italian seas wave extremes: a preliminary assessment. Rendiconti Lincei, 2015, 26, 25-35.	1.0	4
34	Exceptional Bora outbreak in winter 2012: Validation and analysis of high-resolution atmospheric model simulations in the northern Adriatic area. Dynamics of Atmospheres and Oceans, 2015, 71, 1-20.	0.7	36
35	Space–Time Wave Extremes: The Role of Metocean Forcings. Journal of Physical Oceanography, 2015, 45, 1897-1916.	0.7	14
36	Modelling wave-driven sediment transport in a changing climate: a case study for northern Adriatic Sea (Italy). Regional Environmental Change, 2015, 15, 45-55.	1.4	15

#	Article	IF	CITATIONS
37	Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research. Ocean Science, 2014, 10, 281-322.	1.3	154
38	Po River plume pattern variability investigated from model data. Continental Shelf Research, 2014, 87, 84-95.	0.9	73
39	Response of the Adriatic Sea to an intense cold air outbreak: Dense water dynamics and wave-induced transport. Progress in Oceanography, 2014, 128, 115-138.	1.5	69
40	Sediment transport modifications induced by submerged artificial reef systems: a case study for the Gulf of Venice. Oceanological and Hydrobiological Studies, 2014, 43, 7-20.	0.3	7
41	Modelling ocean currents in the northern Adriatic Sea. Continental Shelf Research, 2014, 87, 54-72.	0.9	29
42	Towards an Operational Stereo System for Directional Wave Measurements From Moving Platforms. , 2014, , .		5
43	Stochastic Space-Time Extremes of Wind Sea States: Validation and Modeling. , 2014, , .		4
44	Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling. Renewable Energy, 2013, 60, 462-471.	4.3	61
45	Wave–current interaction: Effect on the wave field in a semi-enclosed basin. Ocean Modelling, 2013, 70, 152-165.	1.0	88
46	Spring 2009 water mass distribution, mixing and transport in the southern Adriatic after a low production of winter dense waters. Continental Shelf Research, 2013, 64, 33-50.	0.9	4
47	Operational models hierarchy for short term marine predictions: The Adriatic Sea example. , 2013, , .		24
48	Wave-current interaction effect on sediment dispersal in a shallow semi-enclosed basin. Journal of Coastal Research, 2013, 165, 1587-1592.	0.1	20
49	Exploring the shelf-slope dynamics in the Adriatic Sea using numerical models and seismic oceanography (SO). Proceedings of Meetings on Acoustics, 2013, , .	0.3	Ο
50	Exceptional dense water formation on the Adriatic shelf in the winter of 2012. Ocean Science, 2013, 9, 561-572.	1.3	117
51	Seismic oceanography imaging of thermal intrusions in strong frontal regions. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
52	Wave climate of the Adriatic Sea: a future scenario simulation. Natural Hazards and Earth System Sciences, 2012, 12, 2065-2076.	1.5	45
53	The response of the Ligurian and Tyrrhenian Seas to a summer Mistral event: A coupled atmosphere–ocean approach. Ocean Modelling, 2012, 48, 30-44.	1.0	40
54	Turbulence variability in the upper layers of the Southern Adriatic Sea under a variety of atmospheric forcing conditions. Continental Shelf Research, 2012, 44, 39-56.	0.9	16

#	Article	IF	CITATIONS
55	Tracking bottom waters in the Southern Adriatic Sea applying seismic oceanography techniques. Continental Shelf Research, 2012, 44, 30-38.	0.9	26
56	Assessment of meteorological climate models as inputs for coastal studies. Ocean Dynamics, 2012, 62, 555-568.	0.9	17
57	ARTIFICIAL DEVIATION OF A SMALL INLET (BEVANO, NORTHERN ITALY): PREDICTION OF FUTURE EVOLUTION AND PLANNING OF MANAGEMENT STRATEGIES USING OPEN-SOURCE COMMUNITY COASTAL MODELS. Coastal Engineering Proceedings, 2012, 1, 57.	0.1	1
58	A note on modeling double diffusive mixing in the global ocean. Ocean Modelling, 2011, 36, 40-48.	1.0	4
59	On the use of a simple primary productivity model to assess the skill of a physical ocean model. Oceanological and Hydrobiological Studies, 2011, 40, 86-95.	0.3	0
60	Towards validating a last generation, integrated wave-current-sediment numerical model in coastal regions using video measurements. Oceanological and Hydrobiological Studies, 2011, 40, 11-20.	0.3	20
61	Air–Sea Interaction in the Ligurian Sea: Assessment of a Coupled Ocean–Atmosphere Model Using In Situ Data from LASIE07. Monthly Weather Review, 2011, 139, 1785-1808.	0.5	22
62	Statistical trend analysis and extreme distribution of significant wave height from 1958 to 1999 – an application to the Italian Seas. Ocean Science, 2010, 6, 525-538.	1.3	48
63	A Note on Modeling Mixing in Stably Stratified Flows. Journals of the Atmospheric Sciences, 2009, 66, 2501-2505.	0.6	23
64	Improved ocean prediction skill and reduced uncertainty in the coastal region from multi-model super-ensembles. Journal of Marine Systems, 2009, 78, S282-S289.	0.9	27
65	Investigating the impact of surface wave breaking on modeling the trajectories of drifters in the northern Adriatic Sea during a wind-storm event. Ocean Modelling, 2009, 30, 225-239.	1.0	79
66	A preliminary estimate of the Stokes dissipation of wave energy in the global ocean. Geophysical Research Letters, 2009, 36, .	1.5	26
67	PREDICTING SEDIMENT TRANSPORT AT COASTAL STRUCTURES: AN INTEGRATED MODEL APPROACH. , 2009, , .		1
68	Collaboration tools and techniques for large model datasets. Journal of Marine Systems, 2008, 69, 154-161.	0.9	31
69	Doubleâ€diffusive layers in the Adriatic Sea. Geophysical Research Letters, 2008, 35, .	1.5	8
70	Variational analysis of drifter positions and model outputs for the reconstruction of surface currents in the central Adriatic during fall 2002. Journal of Geophysical Research, 2008, 113, .	3.3	15
71	Sensitivity of a coupled physical–biological model to turbulence: high-frequency simulations in a northern Adriatic station. Chemistry and Ecology, 2007, 23, 157-175.	0.6	9
72	February 2003 marine atmospheric conditions and the bora over the northern Adriatic. Journal of Geophysical Research, 2007, 112, .	3.3	49

#	Article	IF	CITATIONS
73	Variability of Adriatic Sea coastal turbid waters from SeaWiFS imagery. Journal of Geophysical Research, 2007, 112, .	3.3	82
74	Assessment of wind quality for oceanographic modelling in semi-enclosed basins. Journal of Marine Systems, 2005, 53, 217-233.	0.9	143
75	A rapid response nowcast/forecast system using multiply nested ocean models and distributed data systems. Journal of Marine Systems, 2005, 56, 45-66.	0.9	32
76	A note on Tennekes hypothesis and its impact on second moment closure models. Ocean Modelling, 2005, 9, 23-29.	1.0	9
77	Northern Adriatic response to a wintertime bora wind event. Eos, 2005, 86, 157.	0.1	69
78	Exploring the bottom stress variability in the Venice Lagoon. Journal of Marine Systems, 2004, 51, 161-178.	0.9	42
79	Sediment Dynamics in the Adriatic Sea Investigated with Coupled Models. Oceanography, 2004, 17, 58-69.	0.5	43
80	Qualitative correlation of marine mammals with physical and biological parameters in the ligurian sea. IEEE Journal of Oceanic Engineering, 2003, 28, 29-43.	2.1	32
81	Comments on "A generic length-scale equation for geophysical turbulence models" by L. Umlauf and H. Burchard. Journal of Marine Research, 2003, 61, 693-702.	0.3	12
82	Validation of turbulence closure parameterisations for stably stratified flows using the PROVESS turbulence measurements in the North Sea. Journal of Sea Research, 2002, 47, 239-267.	0.6	30
83	Exploring the thermal cycle of the Northern North Sea area using a 3-D circulation model: the example of PROVESS NNS station. Journal of Sea Research, 2002, 48, 271-286.	0.6	10
84	Tracking the drift of a human body in the coastal ocean using numerical prediction models of the oceanic, atmospheric and wave conditions. Science and Justice - Journal of the Forensic Science Society, 2002, 42, 143-151.	1.3	34
85	Particulate Matter in the Ross Sea: a Spreading Model. Marine Ecology, 2002, 23, 395-410.	0.4	Ο
86	Sensitivity analysis of a robust diagnostic general circulation model of the Ross Sea. Journal of Marine Systems, 2000, 27, 3-36.	0.9	8
87	A Unified Approach to the Modelling of the Venice Lagoon – Adriatic Sea Ecosystem. Estuarine, Coastal and Shelf Science, 1998, 46, 483-492.	0.9	14
88	Climatology of the Northern-Central Adriatic Sea. , 0, , .		15