Marcos Sabino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1588905/publications.pdf

Version: 2024-02-01

20 878 11 papers citations h-index

20 20 20 1353 all docs docs citations times ranked citing authors

19

g-index

#	Article	IF	Citations
1	Short-term ingestion and tissue incorporation of Polystyrene microplastic in the scleractinian coral Porites porites. Regional Studies in Marine Science, 2021, 43, 101697.	0.4	8
2	Lattice Boltzmann simulation of swelling behavior of cylindrical IPN hydrogel tablets. Fluid Phase Equilibria, 2020, 508, 112449.	1.4	4
3	Lattice Boltzmann simulation of swelling of an implant for microtia manufactured with IPN hydrogel. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 491-499.	0.9	2
4	SÃntesis y caracterizaciÃ 3 n de un novedoso biomaterial a base de quitosano modificado con aminoÃ $_1$ cidos. Revista Materia, 2019, 24, .	0.1	0
5	Pilot-scale synthesis and rheological assessment of poly(methyl methacrylate) polymers: Perspectives for medical application. Materials Science and Engineering C, 2015, 51, 107-116.	3.8	8
6	Photothermal and morphological characterization of PLA/PCL polymer blends. Applied Physics A: Materials Science and Processing, 2015, 120, 1323-1329.	1.1	7
7	Starch and chitosan oligosaccharides as interpenetrating phases in poly(N-isopropylacrylamide) injectable gels. Materials Science and Engineering C, 2014, 37, 20-27.	3.8	17
8	In vitro biocompatibility study of biodegradable polyester scaffolds constructed using Fused Deposition Modeling (FDM). IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 356-360.	0.4	6
9	Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 272-279.	1.3	14
10	Characterization of thermo-sensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid. Polymer Bulletin, 2011, 67, 101-124.	1.7	48
11	Effect of the presence of lignin or peat in IPN hydrogels on the sorption of heavy metals. Polymer Bulletin, 2010, 65, 495-508.	1.7	62
12	Evaluation of cell affinity on poly(<scp>L</scp> â€lactide) and poly(εâ€caprolactone) blends and on PLLAâ€ <i>b</i> àâ€PCL diblock copolymer surfaces. Journal of Biomedical Materials Research - Part A, 2008, 87A, 405-417.	2.1	34
13	Influence of dehydration rate on the vitrification of corn protein. Journal of Applied Polymer Science, 2008, 110, 1-7.	1.3	6
14	Changes in crystalline morphology, thermal, and mechanical properties with hydrolytic degradation of immiscible biodegradable PPDX/PCL blends. Journal of Applied Polymer Science, 2008, 110, 3848-3858.	1.3	9
15	Cork: properties, capabilities and applications. International Materials Reviews, 2008, 53, 256-256.	9.4	19
16	Cork: properties, capabilities and applications. International Materials Reviews, 2005, 50, 345-365.	9.4	499
17	Physicochemical, Mechanical, and Biological Properties of Bone Cements Prepared with Functionalized Methacrylates. Journal of Biomaterials Applications, 2004, 19, 147-161.	1.2	12
18	Influence of in Vitro Hydrolytic Degradation on the Morphology and Crystallization Behavior of Poly(p-dioxanone). Biomacromolecules, 2004, 5, 358-370.	2.6	91

#	Article	lF	CITATIONS
19	The effect of hydrolytic degradation on the tensile properties of neat and reinforced Poly(p-dioxanone). Polymer Bulletin, 2002, 48, 291-298.	1.7	15
20	Characterization of PET/LLDPE blends compatibilized with DEM-grafted-polyethylene. Polymer Bulletin, 1998, 41, 191-198.	1.7	17