
S Alex Mitsialis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1588467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal stromal cellâ€derived syndecanâ€2 regulates the immune response during sepsis to foster bacterial clearance and resolution of inflammation. FEBS Journal, 2022, 289, 417-435.	4.7	8
2	Antenatal Mesenchymal Stromal Cell Extracellular Vesicle Therapy Prevents Preeclamptic Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 86-95.	2.9	24
3	Antenatal mesenchymal stromal cell extracellular vesicle treatment preserves lung development in a model of bronchopulmonary dysplasia due to chorioamnionitis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L179-L190.	2.9	12
4	Mesenchymal stromal cell-derived extracellular vesicle therapy prevents preeclamptic physiology through intrauterine immunomodulationâ€. Biology of Reproduction, 2021, 104, 457-467.	2.7	16
5	Therapeutic Effects of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles in Oxygen-Induced Multi-Organ Disease: A Developmental Perspective. Frontiers in Cell and Developmental Biology, 2021, 9, 647025.	3.7	11
6	Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Frontiers in Immunology, 2021, 12, 640595.	4.8	17
7	Intratracheal transplantation of trophoblast stem cells attenuates acute lung injury in mice. Stem Cell Research and Therapy, 2021, 12, 487.	5.5	1
8	Extracellular Vesicles Protect the Neonatal Lung from Hyperoxic Injury through the Epigenetic and Transcriptomic Reprogramming of Myeloid Cells. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1418-1432.	5.6	36
9	Heme oxygenase-1 dampens the macrophage sterile inflammasome response and regulates its components in the hypoxic lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L125-L134.	2.9	16
10	The Unsettling Ambiguity of Therapeutic Extracellular Vesicles from Mesenchymal Stromal Cells. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 539-540.	2.9	5
11	Mesenchymal stromal cellâ€derived small extracellular vesicles restore lung architecture and improve exercise capacity in a model of neonatal hyperoxiaâ€induced lung injury. Journal of Extracellular Vesicles, 2020, 9, 1790874.	12.2	57
12	Defining mesenchymal stromal cell (MSC)â€derived small extracellular vesicles for therapeutic applications. Journal of Extracellular Vesicles, 2019, 8, 1609206.	12.2	400
13	Paving the Road for Mesenchymal Stem Cell-Derived Exosome Therapy in Bronchopulmonary Dysplasia and Pulmonary Hypertension. , 2019, , 131-152.		15
14	Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight, 2019, 4, .	5.0	144
15	PPARÎ ³ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Science Translational Medicine, 2018, 10, .	12.4	198
16	Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 104-116.	5.6	450
17	Reply to Muraca et al.: Exosome Treatment of Bronchopulmonary Dysplasia: How Pure Should Your Exosome Preparation Be?. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 970-970.	5.6	3
18	Macrophage Immunomodulation: The Gatekeeper for Mesenchymal Stem Cell Derived-Exosomes in Pulmonary Arterial Hypertension?. International Journal of Molecular Sciences, 2018, 19, 2534.	4.1	49

S ALEX MITSIALIS

#	Article	IF	CITATIONS
19	"Good things come in small packagesâ€: application of exosome-based therapeutics in neonatal lung injury. Pediatric Research, 2018, 83, 298-307.	2.3	48
20	Late Breaking Abstract - Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through systemic modulation of monocyte phenotypes. , 2018, , .		0
21	Therapeutic Applications of Extracellular Vesicles: Perspectives from Newborn Medicine. Methods in Molecular Biology, 2017, 1660, 409-432.	0.9	26
22	Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Frontiers in Cardiovascular Medicine, 2017, 4, 63.	2.4	180
23	Stem cell–based therapies for the newborn lung and brain: Possibilities and challenges. Seminars in Perinatology, 2016, 40, 138-151.	2.5	64
24	Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates <i>Aspergillus</i> Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice. Stem Cells Translational Medicine, 2015, 4, 1302-1316.	3.3	191
25	The Sugen 5416/Hypoxia Mouse Model of Pulmonary Hypertension Revisited: Longâ€Term Followâ€Up. Pulmonary Circulation, 2014, 4, 619-629.	1.7	113
26	An Argonaute 2 switch regulates circulating miR-210 to coordinate hypoxic adaptation across cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2528-2542.	4.1	48
27	Endothelial Indoleamine 2,3-Dioxygenase Protects against Development of Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 482-491.	5.6	41
28	Vasculoprotective effects of heme oxygenase-1 in a murine model of hyperoxia-induced bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L775-L784.	2.9	39
29	Mesenchymal Stem Cellâ€Mediated Reversal of Bronchopulmonary Dysplasia and Associated Pulmonary Hypertension. Pulmonary Circulation, 2012, 2, 170-181.	1.7	184
30	Improved pulmonary vascular reactivity and decreased hypertrophic remodeling during nonhypercapnic acidosis in experimental pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L875-L890.	2.9	26
31	Exosomes Mediate the Cytoprotective Action of Mesenchymal Stromal Cells on Hypoxia-Induced Pulmonary Hypertension. Circulation, 2012, 126, 2601-2611.	1.6	686
32	Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L829-L837.	2.9	209
33	Mesenchymal Stromal Cells Expressing Heme Oxygenase-1 Reverse Pulmonary Hypertension. Stem Cells, 2011, 29, 99-107.	3.2	105
34	Early Macrophage Recruitment and Alternative Activation Are Critical for the Later Development of Hypoxia-Induced Pulmonary Hypertension. Circulation, 2011, 123, 1986-1995.	1.6	222
35	Divergent Cardiopulmonary Actions of Heme Oxygenase Enzymatic Products in Chronic Hypoxia. PLoS ONE, 2009, 4, e5978.	2.5	24
36	Mutation of Murine Adenylate Kinase 7 Underlies a Primary Ciliary Dyskinesia Phenotype. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 305-313.	2.9	74

S ALEX MITSIALIS

#	Article	IF	CITATIONS
37	Bone Marrow Stromal Cells Attenuate Lung Injury in a Murine Model of Neonatal Chronic Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 1122-1130.	5.6	452
38	Absence of Cyclooxygenase-2 Exacerbates Hypoxia-Induced Pulmonary Hypertension and Enhances Contractility of Vascular Smooth Muscle Cells. Circulation, 2008, 117, 2114-2122.	1.6	80
39	The Role of Heme Oxygenase-1 in Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 158-165.	2.9	178
40	Hypoxia Regulates Bone Morphogenetic Protein Signaling Through C-Terminal–Binding Protein 1. Circulation Research, 2006, 99, 240-247.	4.5	37
41	Extracellular acidosis induces heme oxygenase-1 expression in vascular smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2647-H2652.	3.2	40
42	Targeted Expression of Heme Oxygenase-1 and Pulmonary Responses to Hypoxia. , 2002, , 193-204.		0
43	Carbon Monoxide Controls the Proliferation of Hypoxic Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1997, 272, 32804-32809.	3.4	299
44	Ultraspiracle, a Drosophila Retinoic X Receptor α Homologue, Can Mobilize the Human Thyroid Hormone Receptor To Transactivate a Human Promoter. Biochemistry, 1997, 36, 9221-9231.	2.5	31
45	Retinoic acid alters the expression of pattern-related genes in the developing rat lung. , 1996, 207, 47-59.		75
46	Transgenic regulation of moth chorion gene promoters inDrosophila: Tissue, temporal, and quantitative control of four bidirectional promoters. Journal of Molecular Evolution, 1989, 29, 486-495.	1.8	27
47	Regulatory elements controlling chorion gene expression are conserved between flies and moths.	27.8	121