
Yanghua He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1588015/publications.pdf Version: 2024-02-01

Υληρημία Ης

#	Article	IF	CITATIONS
1	Nitrogen oordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Advanced Materials, 2018, 30, 1706758.	11.1	788
2	Highly active atomically dispersed CoN ₄ fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy and Environmental Science, 2019, 12, 250-260.	15.6	691
3	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 120, 12217-12314.	23.0	563
4	Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chemical Society Reviews, 2020, 49, 3484-3524.	18.7	453
5	Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nature Catalysis, 2020, 3, 1044-1054.	16.1	443
6	Zincâ€Mediated Template Synthesis of Feâ€Nâ€C Electrocatalysts with Densely Accessible Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Advanced Materials, 2020, 32, e1907399.	11.1	319
7	Ordered Pt ₃ Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction. Nano Letters, 2018, 18, 4163-4171.	4.5	304
8	Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and Highâ€Power PGMâ€Free Cathodes in Fuel Cells. Advanced Materials, 2020, 32, e2003577.	11.1	262
9	Atomically Dispersed Metal Catalysts for Oxygen Reduction. ACS Energy Letters, 2019, 4, 1619-1633.	8.8	251
10	Engineering Local Coordination Environments of Atomically Dispersed and Heteroatomâ€Coordinated Single Metal Site Electrocatalysts for Clean Energyâ€Conversion. Advanced Energy Materials, 2020, 10, 1902844.	10.2	245
11	3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy and Environmental Science, 2019, 12, 2830-2841.	15.6	219
12	Ironâ€Free Cathode Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cells: Cobalt Catalysts and the Peroxide Mitigation Approach. Advanced Materials, 2019, 31, e1805126.	11.1	208
13	Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy and Environmental Science, 2020, 13, 3544-3555.	15.6	129
14	Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction in PEM Fuel Cells: Self-Template Synthesis Approach to Enhancing Catalytic Activity and Stability. Electrochemical Energy Reviews, 2019, 2, 231-251.	13.1	128
15	Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design Highâ€Efficient Atomically Dispersed CoN ₄ Active Sites. Angewandte Chemie - International Edition, 2021, 60, 9516-9526.	7.2	119
16	Innovation and challenges in materials design for flexible rechargeable batteries: from 1D to 3D. Journal of Materials Chemistry A, 2018, 6, 735-753.	5.2	99
17	Improving the Stability of Nonâ€Nobleâ€Metal M–N–C Catalysts for Protonâ€Exchangeâ€Membrane Fuel Ce through M–N Bond Length and Coordination Regulation. Advanced Materials, 2021, 33, e2006613.	lls 11.1	94
18	Highly accessible and dense surface single metal FeN ₄ active sites for promoting the oxygen reduction reaction. Energy and Environmental Science, 2022, 15, 2619-2628.	15.6	82

Үалдниа Не

#	Article	IF	CITATIONS
19	Highly efficient and durable MoNiNC catalyst for hydrogen evolution reaction. Nano Energy, 2017, 37, 1-6.	8.2	79
20	PGM-Free Oxygen-Reduction Catalyst Development for Proton-Exchange Membrane Fuel Cells: Challenges, Solutions, and Promises. Accounts of Materials Research, 2022, 3, 224-236.	5.9	73
21	Atomic Structure Evolution of Pt–Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. Advanced Materials, 2021, 33, e2106371.	11.1	62
22	Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts. Nanoscale, 2018, 10, 17318-17326.	2.8	45
23	Binary Atomically Dispersed Metal‣ite Catalysts with Coreâ^'Shell Nanostructures for O ₂ and CO ₂ Reduction Reactions. Small Science, 2021, 1, 2100046.	5.8	29
24	Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13389-13399.	5.2	27
25	Three-dimensional nanoporous gold–cobalt oxide electrode for high-performance electroreduction of hydrogen peroxide in alkaline medium. Journal of Power Sources, 2015, 294, 136-140.	4.0	26
26	Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design Highâ€Efficient Atomically Dispersed CoN ₄ Active Sites. Angewandte Chemie, 2021, 133, 9602-9612.	1.6	21
27	In-situ carbonization approach for the binder-free Ir-dispersed ordered mesoporous carbon hydrogen evolution electrode. Journal of Energy Chemistry, 2017, 26, 1140-1146.	7.1	11
28	Into the "secret―double layer: Alkali cation mediates the hydrogen evolution reaction in basic medium. Journal of Energy Chemistry, 2020, 51, 101-104.	7.1	7
29	Singleâ€Atom catalysts: Engineering Local Coordination Environments of Atomically Dispersed and Heteroatom oordinated Single Metal Site Electrocatalysts for Clean Energyâ€Conversion (Adv. Energy) Tj ET	Qq 110.0. 7	843314 rgBT /(
30	(Invited) Effect of Nanostructure and Surface Chemistry on Activity and Selectivity of Cu-Based Electrocatalysts for Carbon Dioxide Reduction. ECS Meeting Abstracts, 2022, MA2022-01, 2096-2096.	0.0	0
31	(Invited, Digital Presentation) La-Sr-Co Oxide Catalysts for Oxygen Evolution Reaction in Anion Exchange Membrane Water Electrolyzers: The Role of Electrode Fabrication on Performance and Durability. ECS Meeting Abstracts, 2022, MA2022-01, 1718-1718.	0.0	0