
Tyler J Wildes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1587583/publications.pdf Version: 2024-02-01

TVIED I MIINES

#	Article	IF	CITATIONS
1	Myelopoiesis during Solid Cancers and Strategies for Immunotherapy. Cells, 2021, 10, 968.	4.1	7
2	Immune Escape After Adoptive T-cell Therapy for Malignant Gliomas. Clinical Cancer Research, 2020, 26, 5689-5700.	7.0	26
3	Identification of Tumor Specific Lymphocytes Cells in a Murine Glioma Model. Neurosurgery, 2019, 66, 310-638.	1.1	0
4	Effect of atorvastatin on humoral immune response to 23-valent pneumococcal polysaccharide vaccination in healthy volunteers: The StatVax randomized clinical trial. Vaccine, 2019, 37, 1313-1324.	3.8	5
5	Dendritic Cell-Activating Magnetic Nanoparticles Enable Early Prediction of Antitumor Response with Magnetic Resonance Imaging. ACS Nano, 2019, 13, 13884-13898.	14.6	66
6	Massive clonal expansion of medulloblastoma-specific T cells during adoptive cellular therapy. Science Advances, 2019, 5, eaav9879.	10.3	17
7	RNA-Modified T Cells Mediate Effective Delivery of Immunomodulatory Cytokines to Brain Tumors. Molecular Therapy, 2019, 27, 837-849.	8.2	21
8	Concise Review: Modulating Cancer Immunity with Hematopoietic Stem and Progenitor Cells. Stem Cells, 2019, 37, 166-175.	3.2	17
9	Abstract 4075: Overcoming glioma immunoediting and MHC class I loss during adoptive cellular therapy. , 2019, , .		0
10	Abstract 1194: Adoptive cellular therapy overcomes tumor-induced dysregulation of myelopoiesis. , 2019, , .		0
11	Abstract 1194: Adoptive cellular therapy overcomes tumor-induced dysregulation of myelopoiesis. , 2019, , .		0
12	Abstract 4075: Overcoming glioma immunoediting and MHC class I loss during adoptive cellular therapy. , 2019, , .		0
13	Cross-talk between T Cells and Hematopoietic Stem Cells during Adoptive Cellular Therapy for Malignant Glioma. Clinical Cancer Research, 2018, 24, 3955-3966.	7.0	34
14	TMIC-29. REPROGRAMMING BONE MARROW OF TUMOR-BEARING HOSTS FOR GLIOMA IMMUNOTHERAPY. Neuro-Oncology, 2018, 20, vi262-vi262.	1.2	0
15	IMMU-24. THE IMPACT OF BRAIN TUMORS ON HEMATOPOIETIC STEM CELL-DERIVED T CELLS. Neuro-Oncology, 2018, 20, vi126-vi126.	1.2	0
16	TMIC-12. TUMOR-HOMING RNA-NANOPARTICLES REPROGRAM IMMUNE CELLS IN THE BRAIN TUMOR MICROENVIRONMENT. Neuro-Oncology, 2018, 20, vi258-vi258.	1.2	0
17	EXTH-36. BIFUNCTIONAL RNA NANOPARTICLES INDUCE ANTITUMOR IMMUNE RESPONSES AND ALLOW MRI-BASED DETECTION OF DENDRITIC CELL MIGRATION AS A BIOMARKER OF ANTITUMOR IMMUNE RESPONSE. Neuro-Oncology, 2018, 20, vi92-vi93.	1.2	0
18	IMMU-32. RETARGETING IMMUNOEDITED GLIOMA ESCAPE VARIANTS WITH ADOPTIVE CELLULAR THERAPY. Neuro-Oncology, 2018, 20, vi128-vi128.	1.2	0

Tyler J Wildes

#	Article	IF	CITATIONS
19	IMMU-17. HEMATOPOIETIC STEM CELL-DERIVED DENDRITIC CELLS REPROGRAM THE BRAIN TUMOR MICROENVIRONMENT. Neuro-Oncology, 2018, 20, i102-i102.	1.2	0
20	IMMU-20. HEMATOPOIETIC STEM CELLS POTENTIATE EFFICACY OF ADOPTIVE CELL THERAPY AGAINST BRAIN STEM GLIOMA. Neuro-Oncology, 2018, 20, i102-i103.	1.2	0
21	MBRS-63. CCR2+ HEMATOPOIETIC STEM CELLS OVERCOME TREATMENT RESISTANCE TO PD-1 IN MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i141-i142.	1.2	0
22	Linâ^'CCR2+ hematopoietic stem and progenitor cells overcome resistance to PD-1 blockade. Nature Communications, 2018, 9, 4313.	12.8	32
23	mRNA-nanoparticles to enhance and track dendritic cell migration Journal of Clinical Oncology, 2018, 36, 72-72.	1.6	1
24	IMMU-65. Lin-CCR2+ HEMATOPOIETIC STEM CELLS OVERCOME RESISTANCE TO PD-1 BLOCKADE. Neuro-Oncology, 2017, 19, vi127-vi127.	1.2	0
25	IMMU-22. ADOPTIVE CELL THERAPY AGAINST DIPG USING DEVELOPMENTALLY REGULATED ANTIGENS. Neuro-Oncology, 2017, 19, iv32-iv32.	1.2	0
26	TMIC-12. REPROGRAMMING THE BRAIN TUMOR MICROENVIRONMENT WITH HEMATOPOIETIC STEM AND PROGENITOR CELLS. Neuro-Oncology, 2017, 19, vi245-vi245.	1.2	0
27	IMMU-30. TCR Vb CLONAL EXPANSION PREDICTS RESPONSE TO ADOPTIVE IMMUNOTHERAPY AGAINST MEDULLOBLASTOMA. Neuro-Oncology, 2017, 19, vi119-vi119.	1.2	0
28	IMST-47. IDENTIFICATION AND EXPANSION OF GLIOMA-SPECIFIC T CELLS USING TCR $\hat{VI^2}$ EXPRESSION. Neuro-Oncology, 2016, 18, vi97-vi97.	1.2	0
29	IMPS-07T CELL RECEPTOR VARIABLE β CHAIN (TCR Vβ) USAGE TO PREDICT AND GENERATE TUMOR SPECIFIC T LYMPHOCYTES AGAINST INVASIVE GLIOMAS. Neuro-Oncology, 2015, 17, v114.3-v114.	1.2	0
30	IM-15 * ANTI-TUMOR EFFICACY OF ADOPTIVE CELLULAR THERAPY IS SIGNIFICANTLY INCREASED BY HEMATOPOIETIC STEM CELLS. Neuro-Oncology, 2015, 17, iii18-iii18.	1.2	0