Justyna Okarmus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1586014/publications.pdf

Version: 2024-02-01

1307594 1720034 7 204 7 7 citations h-index g-index papers 8 8 8 341 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microglia-Secreted Factors Enhance Dopaminergic Differentiation of Tissue- and iPSC-Derived Human Neural Stem Cells. Stem Cell Reports, 2021, 16, 281-294.	4.8	23
2	Neurodegeneration Induced by Anti-IgLON5 Antibodies Studied in Induced Pluripotent Stem Cell-Derived Human Neurons. Cells, 2021, 10, 837.	4.1	25
3	Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism. Stem Cell Reports, 2021, 16, 1510-1526.	4.8	25
4	Lysosomal perturbations in human dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation. Scientific Reports, 2020, 10, 10278.	3.3	31
5	PARK2 Mutation Causes Metabolic Disturbances and Impaired Survival of Human iPSC-Derived Neurons. Frontiers in Cellular Neuroscience, 2019, 13, 297.	3.7	47
6	Perturbations in RhoA signalling cause altered migration and impaired neuritogenesis in human iPSC-derived neural cells with PARK2 mutation. Neurobiology of Disease, 2019, 132, 104581.	4.4	32
7	Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells. PLoS ONE, 2018, 13, e0191207.	2.5	20