Yeonju Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1585871/publications.pdf Version: 2024-02-01

YEONIII DADK

#	Article	IF	CITATIONS
1	Salt Triggers the Simple Coacervation of an Underwater Adhesive When Cations Meet Aromatic π Electrons in Seawater. ACS Nano, 2017, 11, 6764-6772.	14.6	149
2	Recent Development of SERS Technology: Semiconductor-Based Study. ACS Omega, 2019, 4, 20101-20108.	3.5	105
3	Novel developments and applications of two-dimensional correlation spectroscopy. Journal of Molecular Structure, 2016, 1124, 11-28.	3.6	72
4	Preparation of a Superhydrophobic and Peroxidase-like Activity Array Chip for H ₂ O ₂ Sensing by Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2015, 7, 23472-23480.	8.0	59
5	Coacervation of Interfacial Adhesive Proteins for Initial Mussel Adhesion to a Wet Surface. Small, 2018, 14, e1803377.	10.0	52
6	Two-dimensional correlation spectroscopy in polymer study. Frontiers in Chemistry, 2015, 3, 14.	3.6	44
7	Reaction-Induced Self-Assembly of Gel Structure: A New Insight into Chemical Gelation Process of <i>N</i> -Isopropylacrylamide as Studied by Two-Dimensional Infrared Correlation Spectroscopy. Macromolecules, 2013, 46, 3587-3602.	4.8	34
8	Incorporation of two-dimensional correlation analysis into discriminant analysis as a potential tool for improving discrimination accuracy: Near-infrared spectroscopic discrimination of adulterated olive oils. Talanta, 2020, 212, 120748.	5.5	27
9	Ultrafast Excitonic Behavior in Two-Dimensional Metal–Semiconductor Heterostructure. ACS Photonics, 2019, 6, 1379-1386.	6.6	23
10	Investigation of the Phase Transition Mechanism in LiFePO4 Cathode Using In Situ Raman Spectroscopy and 2D Correlation Spectroscopy during Initial Cycle. Molecules, 2019, 24, 291.	3.8	22
11	Mechanical properties and thermal stability of intermolecular-fitted poly(vinyl alcohol)/α-chitin nanofibrous mat. Carbohydrate Polymers, 2020, 244, 116476.	10.2	21
12	Smooth Factor Analysis (SFA) to Effectively Remove High Levels of Noise from Spectral Data Sets. Applied Spectroscopy, 2018, 72, 765-775.	2.2	20
13	Size-Dependent Surface-Enhanced Raman Scattering Activity of Ag@Cu _{<i>x</i>} OS Yolk–Shell Nanostructures: Surface Plasmon Resonance Induced Charge Transfer. Journal of Physical Chemistry C, 2020, 124, 16616-16623.	3.1	20
14	Direct Dynamic Evidence of Charge Separation in a Dye‣ensitized Solar Cell Obtained under Operando Conditions by Raman Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 10780-10784.	13.8	16
15	A reagent-assisted method in SERS detection of methyl salicylate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 195, 172-175.	3.9	13
16	Different Molecular Interaction between Collagen and α- or β-Chitin in Mechanically Improved Electrospun Composite. Marine Drugs, 2019, 17, 318.	4.6	13
17	Controllable Preparation of SERS-Active Ag-FeS Substrates by a Cosputtering Technique. Molecules, 2019, 24, 551.	3.8	13
18	Surface Reaction of LiCoO ₂ /Li System under High-Voltage Conditions by X-Ray Spectroscopy and Two-Dimensional Correlation Spectroscopy (2D-COS). Applied Spectroscopy, 2011, 65, 320-325.	2.2	12

Yeonju Park

#	Article	IF	CITATIONS
19	Studies on Chemical IR Images of Poly(hydroxybutyrate–co–hydroxyhexanoate)/Poly(ethylene glycol) Blends and Two-Dimensional Correlation Spectroscopy. Polymers, 2019, 11, 507.	4.5	12
20	A robust bis-rhodium(<scp>i</scp>) complex of π-extended planar, anti-aromatic hexaphyrin[1.0.1.0.1.0]. Chemical Communications, 2020, 56, 758-761.	4.1	12
21	Zincon as resonance Raman probe for quantitative evaluation of proteins. Journal of Raman Spectroscopy, 2011, 42, 1963-1966.	2.5	11
22	The mechanism of an enzymatic reaction-induced SERS transformation for the study of enzyme–molecule interfacial interactions. Physical Chemistry Chemical Physics, 2016, 18, 31787-31795.	2.8	11
23	The Study of pH Effects on Phase Transition of Multi-Stimuli Responsive P(NiPAAm-co-AAc) Hydrogel Using 2D-COS. Polymers, 2021, 13, 1447.	4.5	11
24	Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 284, 121636.	3.9	11
25	Characterization of the phase transition mechanism of P(NiPAAm-co-AAc) copolymer hydrogel using 2D correlation IR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119525.	3.9	10
26	Formation mechanism of α-lactalabumin/oleic acid complex characterized by 2D correlation analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 185, 93-97.	3.9	9
27	Highly sensitive determination of iron (III) ion based on phenanthroline probe: Surface-enhanced Raman spectroscopy methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 197, 43-46.	3.9	9
28	A Study on Blend Ratio-dependent Far-IR and Low-frequency Raman Spectra and WAXD Patterns of Poly(3-hydroxybutyrate)/ poly(4-vinylphenol) Using Homospectral and Heterospectral Two-dimensional Correlation Spectroscopy. Analytical Sciences, 2020, 36, 731-735.	1.6	9
29	Understanding the Structural Differences between Spherical and Rodâ€Shaped Human Insulin Nanoparticles Produced by Supercritical Fluids Precipitation. ChemPhysChem, 2015, 16, 476-482.	2.1	8
30	High-yield clicking and dissociation of doxorubicin nanoclusters exhibiting differential cellular uptakes and imaging. Journal of Controlled Release, 2015, 217, 64-73.	9.9	8
31	Reaction at the Electrolyte–Electrode Interface in a Liâ€lon Battery Studied by <i>In Situ</i> Raman Spectroscopy. Bulletin of the Korean Chemical Society, 2017, 38, 511-513.	1.9	7
32	Correlation between magnon and magnetic symmetries of hexagonal RMnO3 (RÂ=ÂEr, Ho, Lu). Journal of Molecular Structure, 2016, 1124, 103-109.	3.6	6
33	Visible laser–induced photoreduction of silver 4â€nitrobenzenethiolate revealed by Raman scattering spectroscopy. Journal of Raman Spectroscopy, 2010, 41, 187-192.	2.5	5
34	2D correlation analysis of the magnetic excitations in Raman spectra of HoMnO3. Journal of Molecular Structure, 2014, 1069, 280-283.	3.6	5
35	Direct Dynamic Evidence of Charge Separation in a Dye ensitized Solar Cell Obtained under Operando Conditions by Raman Spectroscopy. Angewandte Chemie, 2020, 132, 10872-10876.	2.0	5
36	Identification of native charge-transfer status of p-aminothiolphenol adsorbed on noble metallic substrates by surface-enhanced infrared absorption (SEIRA) spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 204, 532-536.	3.9	3

#	Article	IF	CITATIONS
37	Twoâ€Dimensional Correlation Analysis of <scp>pH</scp> â€induced Raman Spectral Changes of α‣actalbumin. Bulletin of the Korean Chemical Society, 2016, 37, 783-785.	1.9	2
38	Innentitelbild: Direct Dynamic Evidence of Charge Separation in a Dyeâ€Sensitized Solar Cell Obtained under Operando Conditions by Raman Spectroscopy (Angew. Chem. 27/2020). Angewandte Chemie, 2020, 132, 10758-10758.	2.0	0