
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1585459/publications.pdf Version: 2024-02-01

DETED & LONES

#	Article	IF	CITATIONS
1	The fundamental role of epigenetic events in cancer. Nature Reviews Genetics, 2002, 3, 415-428.	7.7	4,872
2	Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 2012, 13, 484-492.	7.7	4,840
3	The Epigenomics of Cancer. Cell, 2007, 128, 683-692.	13.5	4,039
4	Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004, 429, 457-463.	13.7	2,833
5	Cancer-epigenetics comes of age. Nature Genetics, 1999, 21, 163-167.	9.4	2,125
6	Cellular differentiation, cytidine analogs and DNA methylation. Cell, 1980, 20, 85-93.	13.5	1,756
7	Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell, 2006, 9, 435-443.	7.7	1,253
8	DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell, 2015, 162, 961-973.	13.5	1,075
9	Cancer Genetics and Epigenetics: Two Sides of the Same Coin?. Cancer Cell, 2012, 22, 9-20.	7.7	966
10	Gene Body Methylation Can Alter Gene Expression and Is a Therapeutic Target in Cancer. Cancer Cell, 2014, 26, 577-590.	7.7	959
11	Targeting the cancer epigenome for therapy. Nature Reviews Genetics, 2016, 17, 630-641.	7.7	888
12	Rethinking how DNA methylation patterns are maintained. Nature Reviews Genetics, 2009, 10, 805-811.	7.7	693
13	Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood, 2002, 100, 2957-2964.	0.6	511
14	Cooperativity between DNA Methyltransferases in the Maintenance Methylation of Repetitive Elements. Molecular and Cellular Biology, 2002, 22, 480-491.	1.1	508
15	5-Methylcytosine, Gene Regulation, and Cancer. Advances in Cancer Research, 1983, 40, 1-30.	1.9	396
16	Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Research, 2012, 22, 2497-2506.	2.4	381
17	Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget, 2014, 5, 587-598.	0.8	367
18	Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Research, 1997, 25, 2529-2531.	6.5	351

#	Article	IF	CITATIONS
19	Epigenetic therapy in immune-oncology. Nature Reviews Cancer, 2019, 19, 151-161.	12.8	345
20	Alterations of immune response of non-small cell lung cancer with Azacytidine. Oncotarget, 2013, 4, 2067-2079.	0.8	336
21	Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12979-12984.	3.3	325
22	Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature, 1977, 267, 364-366.	13.7	322
23	p53 and treatment of bladder cancer. Nature, 1997, 385, 123-124.	13.7	266
24	DNA Methylation Screening Identifies Driver Epigenetic Events of Cancer Cell Survival. Cancer Cell, 2012, 21, 655-667.	7.7	240
25	Delivery of 5-Aza-2′-Deoxycytidine to Cells Using Oligodeoxynucleotides. Cancer Research, 2007, 67, 6400-6408.	0.4	204
26	Role of Nucleosomal Occupancy in the Epigenetic Silencing of the MLH1 CpG Island. Cancer Cell, 2007, 12, 432-444.	7.7	189
27	Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14080-14085.	3.3	186
28	Selective Anchoring of DNA Methyltransferases 3A and 3B to Nucleosomes Containing Methylated DNA. Molecular and Cellular Biology, 2009, 29, 5366-5376.	1.1	179
29	Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10238-10244.	3.3	171
30	Role of the DNA Methyltransferase Variant DNMT3b3 in DNA Methylation. Molecular Cancer Research, 2004, 2, 62-72.	1.5	151
31	Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Developmental Biology, 1978, 66, 57-71.	0.9	147
32	DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nature Communications, 2016, 7, 11453.	5.8	109
33	DNA methylation enables transposable element-driven genome expansion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19359-19366.	3.3	109
34	Bivalent Regions of Cytosine Methylation and H3K27 Acetylation Suggest an Active Role for DNA Methylation at Enhancers. Molecular Cell, 2016, 62, 422-431.	4.5	106
35	Combination Epigenetic Therapy in Advanced Breast Cancer with 5-Azacitidine and Entinostat: A Phase II National Cancer Institute/Stand Up to Cancer Study. Clinical Cancer Research, 2017, 23, 2691-2701.	3.2	106
36	Nucleosomes Containing Methylated DNA Stabilize DNA Methyltransferases 3A/3B and Ensure Faithful Epigenetic Inheritance. PLoS Genetics, 2011, 7, e1001286.	1.5	103

#	Article	IF	CITATIONS
37	Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nature Cancer, 2021, 2, 1002-1017.	5.7	99
38	Allelic methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood, 2012, 119, 206-216.	0.6	97
39	The role of DNA methylation in directing the functional organization of the cancer epigenome. Genome Research, 2015, 25, 467-477.	2.4	90
40	The endothelin receptor B (EDNRB) promoter displays heterogeneous, site specific methylation patterns in normal and tumor cells. Human Molecular Genetics, 2001, 10, 903-910.	1.4	87
41	Dual Inhibition of DNA and Histone Methyltransferases Increases Viral Mimicry in Ovarian Cancer Cells. Cancer Research, 2018, 78, 5754-5766.	0.4	83
42	Switching roles for DNA and histone methylation depend on evolutionary ages of human endogenous retroviruses. Genome Research, 2018, 28, 1147-1157.	2.4	82
43	Allele-specific methylation of the human c-Ha-ras-1 gene. Cell, 1987, 50, 711-717.	13.5	81
44	Overview of Cancer Epigenetics. Seminars in Hematology, 2005, 42, S3-S8.	1.8	79
45	DNA methylation as a target for drug design. Pharmaceutical Research, 1998, 15, 175-187.	1.7	71
46	PAX6 methylation and ectopic expression in human tumor cells. International Journal of Cancer, 2000, 87, 179-185.	2.3	69
47	Origins of Bidirectional Promoters: Computational Analyses of Intergenic Distance in the Human Genome. Molecular Biology and Evolution, 2003, 21, 463-467.	3.5	67
48	The Rate of CpG Mutation inAluRepetitive Elements within the p53 Tumor Suppressor Gene in the Primate Germline. Journal of Molecular Biology, 1996, 258, 240-250.	2.0	66
49	Combination epigenetic therapy in metastatic colorectal cancer (mCRC) with subcutaneous 5-azacitidine and entinostat: a phase 2 consortium/stand Up 2 cancer study. Oncotarget, 2017, 8, 35326-35338.	0.8	66
50	Structure of nucleosome-boundÂDNA methyltransferases DNMT3A and DNMT3B. Nature, 2020, 586, 151-155.	13.7	61
51	Analysis of cyclin-dependent kinase inhibitor expression and methylation patterns in human prostate cancers. , 2000, 43, 233-242.		57
52	A Phase I Trial of a Guadecitabine (SGI-110) and Irinotecan in Metastatic Colorectal Cancer Patients Previously Exposed to Irinotecan. Clinical Cancer Research, 2018, 24, 6160-6167.	3.2	46
53	Mutagenicity of nitric oxide is not caused by deamination of cytosine or 5-methylcytosine in double-stranded DNA. Carcinogenesis, 1994, 15, 2899-2903.	1.3	44
54	A phase 1 study of azacitidine combined with chemotherapy in childhood leukemia: a report from the TACL consortium. Blood, 2018, 131, 1145-1148.	0.6	44

#	Article	IF	CITATIONS
55	ldentifying aggressive prostate cancer foci using a DNA methylation classifier. Genome Biology, 2017, 18, 3.	3.8	43
56	Down-regulation of ARID1A is sufficient to initiate neoplastic transformation along with epigenetic reprogramming in non-tumorigenic endometriotic cells. Cancer Letters, 2017, 401, 11-19.	3.2	42
57	Methylation inhibitors can increase the rate of cytosine deamination by (cytosine-5)-DNA methyltransferase. Nucleic Acids Research, 1996, 24, 3267-3275.	6.5	41
58	DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. Cell Genomics, 2022, 2, 100144.	3.0	37
59	Early acquisition of homozygous deletions of p16/p19 during squamous cell carcinogenesis and genetic mosaicism in bladder cancer. Oncogene, 1998, 17, 3021-3027.	2.6	34
60	Analysis of individual remodeled nucleosomes reveals decreased histone–DNA contacts created by hSWI/SNF. Nucleic Acids Research, 2009, 37, 5279-5294.	6.5	34
61	Mother–child transmission of epigenetic information by tunable polymorphic imprinting. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11970-E11977.	3.3	33
62	Activation of a Subset of Evolutionarily Young Transposable Elements and Innate Immunity Are Linked to Clinical Responses to 5-Azacytidine. Cancer Research, 2020, 80, 2441-2450.	0.4	33
63	Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters. Scientific Reports, 2017, 7, 41947.	1.6	29
64	Identification of DNA Methylation–Independent Epigenetic Events Underlying Clear Cell Renal Cell Carcinoma. Cancer Research, 2016, 76, 1954-1964.	0.4	28
65	Endothelial Cells Degrade Extracellular Matrix Proteins Produced In Vitro. Thrombosis and Haemostasis, 1985, 54, 498-502.	1.8	28
66	Characterisation of human cells transformed in vitro by urethane. Nature, 1975, 256, 322-324.	13.7	26
67	Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nature Cancer, 2021, 2, 1002-1017.	5.7	23
68	Nucleosome Occupancy and Methylome Sequencing (NOMe-seq). Methods in Molecular Biology, 2018, 1708, 267-284.	0.4	20
69	Oocyte age and preconceptual alcohol use are highly correlated with epigenetic imprinting of a noncoding RNA (<i>nc886</i>). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
70	Bladder cancer genotype stability during clinical progression. Genes Chromosomes and Cancer, 2000, 29, 26-32.	1.5	12
71	Enhancer-Dependent, Locus-Wide Regulation of the Imprinted Mouse Insulin-Like Growth Factor II Gene. Journal of Biochemistry, 1998, 123, 984-991.	0.9	5
72	Mesodermal determination genes: Evidence from DNA methylation studies. BioEssays, 1988, 8, 100-103.	1.2	4

#	Article	IF	CITATIONS
73	The cancer epigenome. Genome, 2013, 56, 540-541.	0.9	3
74	Chromosome-specific retention of cancer-associated DNA hypermethylation following pharmacological inhibition of DNMT1. Communications Biology, 2022, 5, .	2.0	2
75	PAX6 methylation and ectopic expression in human tumor cells. , 2000, 87, 179.		1
76	Decoding the Chromatin Code. Blood, 2012, 120, SCI-4-SCI-4.	0.6	0