
Izumi Muto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1585284/publications.pdf Version: 2024-02-01

Ιζυμαι Μυτο

#	Article	IF	CITATIONS
1	Pit Initiation Mechanism at MnS Inclusions in Stainless Steel: Synergistic Effect of Elemental Sulfur and Chloride Ions. Journal of the Electrochemical Society, 2013, 160, C511-C520.	1.3	115
2	Microelectrochemical Measurements of Dissolution of MnS Inclusions and Morphological Observation of Metastable and Stable Pitting on Stainless Steel. Journal of the Electrochemical Society, 2007, 154, C439.	1.3	111
3	A Microelectrochemical System for In Situ High-Resolution Optical Microscopy: Morphological Characteristics of Pitting at MnS Inclusion in Stainless Steel. Journal of the Electrochemical Society, 2012, 159, C341-C350.	1.3	92
4	Hydrogen Gas Sensor Using Pt- and Pd-Added Anodic TiO[sub 2] Nanotube Films. Journal of the Electrochemical Society, 2010, 157, J221.	1.3	66
5	Microelectrochemical Investigation on Pit Initiation at Sulfide and Oxide Inclusions in Type 304 Stainless Steel. Journal of the Electrochemical Society, 2009, 156, C55.	1.3	63
6	Fabrication of nanoporous copper by dealloying amorphous binary Ti–Cu alloys in hydrofluoric acid solutions. Intermetallics, 2012, 29, 14-20.	1.8	62
7	Pit initiation on sensitized Type 304 stainless steel under applied stress: Correlation of stress, Cr-depletion, and inclusion dissolution. Corrosion Science, 2020, 167, 108506.	3.0	54
8	Effect of atmospheric aging on dissolution of MnS inclusions and pitting initiation process in type 304 stainless steel. Corrosion Science, 2016, 106, 25-34.	3.0	51
9	Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions. Corrosion Science, 2012, 57, 22-29.	3.0	44
10	Morphological Characteristics of Trenching around MnS Inclusions in Type 316ÂStainless Steel: The Role of Molybdenum in Pitting Corrosion Resistance. Journal of the Electrochemical Society, 2019, 166, C3081-C3089.	1.3	44
11	Direct Observation of Pit Initiation Process on Type 304 Stainless Steel. Materials Transactions, 2014, 55, 857-860.	0.4	43
12	Microelectrochemical Investigation of Anodic Polarization Behavior of CrS Inclusions in Stainless Steels. Journal of the Electrochemical Society, 2009, 156, C395.	1.3	42
13	Microelectrochemical Aspects of Interstitial Carbon in Type 304 Stainless Steel: Improving Pitting Resistance at MnS Inclusion. Journal of the Electrochemical Society, 2015, 162, C270-C278.	1.3	41
14	Simultaneous visualization of pH and Clâ^' distributions inside the crevice of stainless steel. Corrosion Science, 2016, 106, 298-302.	3.0	40
15	Fabrication of nanoporous copper by dealloying of amorphous Ti–Cu–Ag alloys. Journal of Alloys and Compounds, 2014, 586, S134-S138.	2.8	39
16	Real-Time Microelectrochemical Observations of Very Early Stage Pitting on Ferrite-Pearlite Steel in Chloride Solutions. Journal of the Electrochemical Society, 2017, 164, C261-C268.	1.3	39
17	Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminium alloys. Corrosion Science, 2011, 53, 2006-2014.	3.0	37
18	Improvement of Pitting Corrosion Resistance of Type 316L Stainless Steel by Potentiostatic Removal of Surface MnS Inclusions. International Journal of Corrosion, 2012, 2012, 1-6.	0.6	37

#	Article	IF	CITATIONS
19	Effects of Corrosion and Cracking of Sulfide Inclusions on Pit Initiation in Stainless Steel. Journal of the Electrochemical Society, 2014, 161, C494-C500.	1.3	37
20	Effectiveness of an intercritical heat-treatment on localized corrosion resistance at the microstructural boundaries of medium-carbon steels. Corrosion Science, 2019, 154, 159-177.	3.0	37
21	Visualization of pH and pCl Distributions: Initiation and Propagation Criteria for Crevice Corrosion of Stainless Steel. Journal of the Electrochemical Society, 2012, 159, C289-C297.	1.3	36
22	Nanoporous palladium fabricated from an amorphous Pd42.5Cu30Ni7.5P20 precursor and its ethanol electro-oxidation performance. Electrochimica Acta, 2013, 108, 512-519.	2.6	36
23	Pitting Corrosion Resistance of Martensite of AISI 1045 Steel and the Beneficial Role of Interstitial Carbon. Journal of the Electrochemical Society, 2017, 164, C962-C972.	1.3	36
24	Modeling of Atmospheric Corrosion Environments and Its Application to Constant Dew-Point Corrosion Test. Zairyo To Kankyo/ Corrosion Engineering, 1998, 47, 519-527.	0.0	35
25	Effects of the initial microstructure of Ti–Cu alloys on final nanoporous copper via dealloying. Journal of Alloys and Compounds, 2013, 557, 166-171.	2.8	32
26	Bimodal nanoporous nickel prepared by dealloying Ni38Mn62 alloys. Intermetallics, 2012, 31, 157-164.	1.8	31
27	Pitting at inclusions of the equiatomic CoCrFeMnNi alloy and improving corrosion resistance by potentiodynamic polarization in H2SO4. Corrosion Science, 2021, 191, 109748.	3.0	31
28	Elaboration of nanoporous copper by modifying surface diffusivity by the minor addition of gold. Microporous and Mesoporous Materials, 2013, 165, 257-264.	2.2	30
29	The Role of Oxide Films on TiS and Ti ₄ C ₂ S ₂ Inclusions in the Pitting Corrosion Resistance of Stainless Steels. Journal of the Electrochemical Society, 2013, 160, C262-C269.	1.3	29
30	In situ monitoring of crevice corrosion morphology of Type 316L stainless steel and repassivation behavior induced by sulfate ions. Corrosion Science, 2017, 127, 131-140.	3.0	29
31	Passivity of (Mn,Cr)S inclusions in type 304 stainless steel: The role of Cr and the critical concentration for preventing inclusion dissolution in NaCl solution. Corrosion Science, 2020, 176, 109060.	3.0	28
32	Nickel-stabilized nanoporous copper fabricated from ternary TiCuNi amorphous alloys. Materials Letters, 2013, 94, 128-131.	1.3	27
33	Local Electrochemistry and In Situ Microscopy of Pitting at Sensitized Grain Boundary of Type 304 Stainless Steel in NaCl Solution. Journal of the Electrochemical Society, 2017, 164, C779-C787.	1.3	25
34	First-principles analysis of the inhibitive effect of interstitial carbon on an active dissolution of martensitic steel. Corrosion Science, 2020, 163, 108251.	3.0	25
35	Cerium addition to CaS inclusions in stainless steel: Insolubilizing water-soluble inclusions and improving pitting corrosion resistance. Corrosion Science, 2021, 180, 109222.	3.0	25
36	Dealloying behavior of amorphous binary Ti–Cu alloys in hydrofluoric acid solutions at various temperatures. Journal of Alloys and Compounds, 2013, 581, 567-572.	2.8	23

Іzuмі Мито

#	Article	IF	CITATIONS
37	Anodic Polarization Characteristics and Electrochemical Properties of Fe ₃ C in Chloride Solutions. Journal of the Electrochemical Society, 2019, 166, C345-C351.	1.3	22
38	Local Dissolution of MnS Inclusion and Microstructural Distribution of Absorbed Hydrogen in Carbon Steel. Journal of the Electrochemical Society, 2011, 158, C302.	1.3	21
39	Micro-electrochemical investigation on the role of Mg in sacrificial corrosion protection of 55mass%Al-Zn-Mg coated steel. Corrosion Science, 2017, 129, 126-135.	3.0	20
40	Artificial MnS Inclusions in Stainless Steel: Fabrication by Spark Plasma Sintering and Corrosion Evaluation by Microelectrochemical Measurements. ISIJ International, 2020, 60, 196-198.	0.6	20
41	Fabrication of Ultrafine Nanoporous Copper by the Minor Addition of Gold. Materials Transactions, 2012, 53, 1765-1769.	0.4	19
42	Improving Pitting Corrosion Resistance at Inclusions and Ductility of a Martensitic Medium-Carbon Steel: Effectiveness of Short-Time Tempering. Journal of the Electrochemical Society, 2018, 165, C711-C721.	1.3	19
43	Mechanism for the Morphological Change from Trenching to Pitting around Intermetallic Particles in AA1050 Aluminum. Journal of the Electrochemical Society, 2019, 166, C19-C32.	1.3	18
44	The role of applied stress in the anodic dissolution of sulfide inclusions and pit initiation of stainless steels. Corrosion Science, 2021, 183, 109312.	3.0	18
45	In Situ Ellipsometric Analysis of Growth Processes of Anodic TiO[sub 2] Nanotube Films. Journal of the Electrochemical Society, 2008, 155, C154.	1.3	17
46	Effect of anodizing on galvanic corrosion resistance of Al coupled to Fe or type 430 stainless steel in diluted synthetic seawater. Corrosion Science, 2021, 179, 109145.	3.0	17
47	Electrochemical Properties of Titanium in PEFC Bipolar Plate Environments. Materials Transactions, 2010, 51, 939-947.	0.4	16
48	A Methodology for Fabrication of Highly Pitting Corrosion-Resistant Type 304 Stainless Steel by Plasma Carburizing and Post-Pickling Treatment. Journal of the Electrochemical Society, 2018, 165, C441-C449.	1.3	16
49	Pitting at the δÎγ Boundary of Type 304 Stainless Steel in NaCl Solution: The Role of Oxide Inclusions and Segregation. Journal of the Electrochemical Society, 2017, 164, C991-C1002.	1.3	14
50	Morphological Change and Open-circuit Potential of Single Metastable Pit on AA1050 Aluminum in NaCl Solution. Journal of the Electrochemical Society, 2021, 168, 021504.	1.3	14
51	Roles of Interstitial Nitrogen, Carbon, and Boron in Steel Corrosion: Generation of Oxyanions and Stabilization of Electronic Structure. Journal of the Electrochemical Society, 2020, 167, 081503.	1.3	13
52	Effect of Sensitization on Pitting Corrosion at MnS and CrS in Type 304 Stainless Steel. Journal of the Electrochemical Society, 2021, 168, 091504.	1.3	13
53	Environmental and Metallurgical Factors Affecting Discoloration of Titanium Sheets in Atmospheric Environments. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2003, 89, 833-840.	0.1	12
54	Micro-Electrochemical Properties of CeS Inclusions in Stainless Steel and Inhibiting Effects of Ce ³⁺ Ions on Pitting. Journal of the Electrochemical Society, 2017, 164, C901-C910.	1.3	12

#	Article	IF	CITATIONS
55	Galvanic Corrosion of AA5083/Fe in Diluted Synthetic Seawater: Effect of Anodizing on Local Electrochemistry on and around Al _₆ (Fe,Mn) on Al-Matrix. Journal of the Electrochemical Society, 2022, 169, 020550.	1.3	12
56	Improvement of Discoloration Resistance of Vacuum Annealed Commercially Pure Titanium Sheets in Atmospheric Environments. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2004, 90, 278-285.	0.1	11
57	Dependency of the formation of Au-stabilized nanoporous copper on the dealloying temperature. Microporous and Mesoporous Materials, 2014, 186, 181-186.	2.2	11
58	Relationships between Pitting Corrosion Potentials and MnS Dissolution of 5–18 Mass% Cr Steels. Journal of the Electrochemical Society, 2018, 165, C732-C742.	1.3	11
59	Beneficial role of retained austenite in pitting corrosion resistance of Fe-C-Si-Mn steel in chloride environments. Corrosion Science, 2022, 200, 110251.	3.0	11
60	Detection of Hydrogen Distribution in Pure Iron Using WO ₃ Thin Film. ISIJ International, 2018, 58, 1860-1867.	0.6	10
61	Real-time in situ observation of the corrosion process of die-cast AZ91D magnesium alloy in NaCl solutions under galvanostatic polarization. Corrosion Science, 2021, 192, 109834.	3.0	10
62	First-Principles Investigation on Work Function of Martensitic Carbon Steels: Effect of Interstitial Carbon on Anodic Dissolution Resistance. Journal of the Electrochemical Society, 2021, 168, 111503.	1.3	10
63	High-Temperature Heat-Treatment at 1673 K: Improvement of Pitting Corrosion Resistance at Inclusions of Type 304 Stainless Steel under Applied Stress. Materials Transactions, 2022, 63, 265-268.	0.4	10
64	Pitting Corrosion Behavior of Stainless Steels in a Marine Environment and Its Estimation Method. Zairyo To Kankyo/ Corrosion Engineering, 1993, 42, 714-720.	0.0	9
65	Characterization of Atmospheric Corrosion Behavior on Stainless Steels and Modeling of Outdoor Environments Materia Japan, 1999, 38, 791-797.	0.1	9
66	A Microelectrochemical Approach to Understanding Hydrogen Absorption into Steel during Pitting Corrosion. ISIJ International, 2016, 56, 495-497.	0.6	9
67	Effect of Alloying Elements on Atmospheric Corrosion Behavior of Zinc Die-Casting Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 337-346.	0.2	8
68	Effects of Third Element Addition on Atmospheric Corrosion Resistance of Zinc-Aluminum Die-Cast Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2009, 73, 533-541.	0.2	8
69	Dealloying Behaviours of an Equiatomic TiCu Alloy. Materials Transactions, 2013, 54, 1120-1125.	0.4	8
70	Improving the Pitting Corrosion Resistance of AA1050 Aluminum by Removing Intermetallic Particles during Conversion Treatments. Materials Transactions, 2021, 62, 1160-1167.	0.4	8
71	Role of Corrosion Products in the Suppression of Atmospheric Corrosion of Aluminum and its Alloys. ECS Transactions, 2010, 25, 23-33.	0.3	7
72	Formation of Pt Skin Layer on Ordered and Disordered Pt-Co Alloys and Corrosion Resistance in Sulfuric Acid. Electrocatalysis, 2018, 9, 539-549.	1.5	7

#	Article	IF	CITATIONS
73	Elucidating Electrochemical Properties at the Boundary between MnS and Steel Matrix: Towards the Improvement of Pitting Corrosion Resistance of Stainless Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 207-214.	0.1	7
74	A Corrosion Resistant Sintered Stainless Steel: Type 304L Containing Mo-Rich Phases. Materials Transactions, 2020, 61, 2248-2251.	0.4	7
75	A Combinatorial Screening Method for Corrosion Research Using Ion-Beam- Deposited Thin-Film Alloys and Microelectrochemical Measurements. Materials Transactions, 2009, 50, 1894-1897.	0.4	6
76	Cut Edge Corrosion Inhibition by Chromate in Primer of Prepainted 55% Al–Zn Alloy Coated Steel. Journal of the Electrochemical Society, 2011, 158, C42.	1.3	6
77	Challenges and Prospects in Corrosion Science and Technology. Materia Japan, 2017, 56, 175-179.	0.1	6
78	NH ₄ ⁺ Generation: The Role of NO ₃ ^{â^`} in the Crevice Corrosion Repassivation of Type 316L Stainless Steel. Journal of the Electrochemical Society, 2019, 166, C250-C260.	1.3	6
79	Kinetics of Pit Growth for Stainless Steels under the Water Droplet Containing Chloride Ion. Zairyo To Kankyo/ Corrosion Engineering, 1995, 44, 505-512.	0.0	5
80	Recent Advances in Stainless Steels Used for Architectural Applications and Frontier of Atmospheric Corrosion Research. Zairyo To Kankyo/ Corrosion Engineering, 2001, 50, 203-209.	0.0	5
81	Microelectrochemistry of Sulfide Inclusions and Pit Initiation Mechanisms of Stainless Steels. Hyomen Kagaku, 2015, 36, 18-23.	0.0	5
82	Micro-ElectrochemicalIn SituObservation of Pit Initiation at Precipitates in AA5182 Al-Mg Alloy in 0.1 M NaCl. ECS Transactions, 2017, 80, 553-564.	0.3	5
83	Electrochemical Properties of Carbon Steel and Low Alloy Steels in Simulated Geological Disposal Environment. Zairyo To Kankyo/ Corrosion Engineering, 2008, 57, 37-45.	0.0	5
84	Effect of Impurity Elements on Localized Corrosion of Zirconium in Chloride Containing Environment. Journal of the Electrochemical Society, 2020, 167, 141507.	1.3	5
85	Corrosion Propagation Behavior of Magnesium Alloys under Atmospheric Conditions. ECS Transactions, 2009, 16, 71-84.	0.3	4
86	Microelectrochemical Investigation of Hydrogen Absorption and Dissolution Behavior of MnS Inclusions in Carbon Steel. ECS Transactions, 2011, 33, 9-20.	0.3	4
87	Effect of Applied Stress on Pitting Corrosion Behavior of Type 304 Stainless Steel in Chloride Environment. ECS Transactions, 2017, 80, 1407-1413.	0.3	4
88	Mechanism of Corrosion Protection at Cut Edge of Zn-11%Al-3%Mg-0.2%Si Coated Steel Sheets. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 752-758.	0.1	4
89	Roles of Alloying Elements in the Corrosion Resistance of Equiatomic CoCrFeMnNi High-Entropy Alloy and Application to Corrosion-Resistant Alloy Design. Materials Transactions, 2021, 62, 1677-1680.	0.4	4
90	High-Temperature Annealing of Ferritic Stainless Steel: Modification of Sulfide Inclusion Properties and Inhibition of Inclusion Dissolution. Zairyo To Kankyo/ Corrosion Engineering, 2020, 69, 194-198.	0.0	4

Іzuмі Мито

#	Article	IF	CITATIONS
91	Rust Staining Resistance of Stainless Steels in a Marine Environment and Its Estimation Method. Zairyo To Kankyo/ Corrosion Engineering, 1993, 42, 211-218.	0.0	3
92	Nanoporous Copper Dealloyed from a Nanocrystallized Ticu Alloy. Materials Science Forum, 2013, 750, 72-75.	0.3	3
93	Microelectrochemical Study on the Surface Oxidation of Pt: The Effects of Crystal Orientation and Grain Boundary. Materials Transactions, 2014, 55, 735-738.	0.4	3
94	Effect of Phosphate and Chromate Pigments on Sacrificial Corrosion Protection by Al–Zn Coating and Delamination Mechanism of Pre-painted Galvalume Steel. ISIJ International, 2016, 56, 2267-2275.	0.6	3
95	â¢. Advanced Electrochemical Methods for Corrosion Study―Micro-scale Polarization―. Zairyo To Kankyo/ Corrosion Engineering, 2018, 67, 197-203.	0.0	3
96	Evaluation Methods for Rusting Behavior of Stainless Steels in Architectural Applications. Zairyo To Kankyo/ Corrosion Engineering, 1998, 47, 370-375.	0.0	2
97	Microelectrochemistry on CrS and MnS Inclusions and Its Relation with Pitting Potentials of Stainless Steels. ECS Transactions, 2009, 16, 269-279.	0.3	2
98	Scanning Kelvin Probe Analysis of Cut Edge Corrosion on Prepainted Galvanized Steel with Chromate-Containing Epoxy Primer. ECS Transactions, 2010, 25, 59-70.	0.3	2
99	Visualization of Solution Chemistry inside Crevice by pH and pCl Sensing Plates. ECS Transactions, 2012, 41, 205-216.	0.3	2
100	Uniform Evolution of Nanoporosity on Amorphous Ti–Cu Alloys. Journal of Nanoscience and Nanotechnology, 2014, 14, 7879-7883.	0.9	2
101	Corrosion Resistance of a Free-Cutting Soft-Magnetic Stainless Steel in Pure Water. Materials Transactions, 2015, 56, 1814-1820.	0.4	2
102	Effect of Cr Content on Pit Initiation Behavior at MnS Inclusions in Fe-Cr Steels. ECS Transactions, 2017, 75, 9-20.	0.3	2
103	Microscopic Polarization Behavior of Cerium Sulfide Inclusions in Stainless Steel. ECS Transactions, 2017, 75, 27-34.	0.3	2
104	Constant Dew Point Corrosion Tests for Metals. , 0, , .		2
105	Mechanism of Corrosion Protection at Cut Edge of Zn-11%Al-3%Mg-0.2%Si Coated Steel Sheets. ISIJ International, 2020, 60, 2038-2043.	0.6	2
106	Role of CaS Inclusions in Pitting Initiation of Carbon Steel: Triggering Steel Depassivation. ISIJ International, 2022, 62, 750-757.	0.6	2
107	<i>In situ</i> Analysis of Passive Films on Alloy 600 by Modulated UV-visible Reflection Spectroscopy. Corrosion Engineering, 1988, 37, 664-671.	0.1	1
108	Characterization of Rusting Process on Stainless Steels. Zairyo To Kankyo/ Corrosion Engineering, 1995, 44, 442-447.	0.0	1

#	Article	IF	CITATIONS
109	On Aesthetic Degradation of Stainless Steel. Materials Transactions, JIM, 1996, 37, 367-372.	0.9	1
110	Effects of Environmental Parameters on Marine Corrosion of Aluminium Alloys. Advanced Materials Research, 2012, 569, 95-98.	0.3	1
111	Development of a New Microelectrochemical Measurement System for In Situ Optical Microscopic Observation of Pit Initiation Processes. ECS Transactions, 2012, 41, 237-245.	0.3	1
112	Electrochemical Roles of Anti-corrosive Pigments in Sacrificial Corrosion Protection of Painted Galvanized Steel and their Relation to Organic Coating Delamination. ISIJ International, 2015, 55, 2443-2449.	0.6	1
113	Electrochemical Passivation for Sm2Fe17N3 Magnetic Powders in Non-Aqueous Solvents. Electrochimica Acta, 2017, 224, 386-396.	2.6	1
114	Hydrogen Entry into Pure Iron Treated by Plasma Nitriding. ECS Transactions, 2017, 75, 43-50.	0.3	1
115	Effects of Deposited Salts on Corrosion Behavior for 1100 Aluminum Alloy during Constant Dew Point Test. Zairyo To Kankyo/ Corrosion Engineering, 2013, 62, 56-60.	0.0	1
116	Observations on Pit Initiation Behavior of Carbon Steel Using Microelectrochemical System with Confocal Laser Scanning Microscopy. Zairyo To Kankyo/ Corrosion Engineering, 2018, 67, 497-501.	0.0	1
117	Electrochemical Properties of Microstructures of Carbon Steels and Metallurgical Approaches for Improving Corrosion Resistance. Materia Japan, 2021, 60, 784-792.	0.1	1
118	Maintenance and Selection of Stainless Steels for Architectural Application. Zairyo To Kankyo/ Corrosion Engineering, 1996, 45, 377-383.	0.0	0
119	Electrochemical Properties and Contact Resistance of Titanium in PEFC Bipolar Plate Environment. ECS Transactions, 2009, 16, 23-35.	0.3	0
120	Initiation and Propagation of Atmospheric Corrosion on Aluminum Alloys under a Cyclic Wet-dry Condition with a Constant Dew Point. ECS Transactions, 2009, 16, 37-47.	0.3	0
121	Weathering of Light Metals in the Atmosphere. Applied Mechanics and Materials, 0, 148-149, 380-383.	0.2	0
122	Electrolytic Grinding Reducing for Stainless Steel. Materia Japan, 2014, 53, 23-25.	0.1	0
123	Effect of Plasma Carburizing Treatment on Pitting Corrosion Resistance of Type 304 Stainless Steel. ECS Transactions, 2017, 75, 1-9.	0.3	0
124	Effect of Nitrate Ions on Repassivation Behavior of Crevice Corrosion on Type 316L Stainless Steel. ECS Transactions, 2017, 80, 519-526.	0.3	0
125	Role of Ni Addition in Corrosion Behavior of Model Interface between Rust Layer and Steel Matrix on Weathering Steel. ECS Transactions, 2017, 80, 499-507.	0.3	0
126	Elaboration of Nanoporous Copper via Chemical Composition Design of Amorphous Precursor Alloys. , 2018, , .		0

Іzuмі Мито

#	Article	IF	CITATIONS
127	Micro-electrochemical Properties and Pitting Corrosion Resistance of Microstructures of Carbon Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, .	0.1	0
128	Role of CaS Inclusions in Pitting Initiation of Carbon Steel: Triggering Steel Depassivation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, , .	0.1	0
129	Change in pH and Chloride Concentration inside Crevice of Stainless Steels. ECS Meeting Abstracts, 2018, , .	0.0	0
130	Effects of Severe Plastic Deformation and Interstitial Carbon on Corrosion Resistance of Steel. ECS Meeting Abstracts, 2018, , .	0.0	0
131	The Role of Nitrate Ions in Repassivation of Crevice Corrosion on Type 316L Stainless Steel. ECS Meeting Abstracts, 2018, , .	0.0	0
132	Effect of Applied Stress on Pit Initiation of Sensitized Type 304 Stainless Steel in Chloride Solution. ECS Meeting Abstracts, 2018, , .	0.0	0
133	The Role of Pitting at Mns Inclusions in Intergranular Corrosion of Sensitized Type 304 Stainless Steel in NaCl Solution. ECS Meeting Abstracts, 2018, , .	0.0	0
134	In Situ Microscopic Observation of Pitting Corrosion Behavior of A1050-O. ECS Meeting Abstracts, 2018, , .	0.0	0
135	Effect of Molybdenum on Pit Initiation at Manganese Sulfide Inclusions in Stainless Steel. ECS Meeting Abstracts, 2018, , .	0.0	0
136	The Effect of Interstitial Carbon on Pitting Corrosion Resistance of Martensitic Carbon Steels. ECS Meeting Abstracts, 2018, , .	0.0	0
137	Spatially-Resolved Detection of Hydrogen Absorbed into Pure Iron Using Electrochromic Tungsten Oxide Thin Film. ECS Meeting Abstracts, 2018, , .	0.0	0
138	Visualization of Potential Distribution inside Crevice of Type 430 and 304 Stainless Steels. ECS Meeting Abstracts, 2018, , .	0.0	0
139	The Effect of Heat-Treatments on Corrosion Resistance of Martensitic Stainless Steel. ECS Meeting Abstracts, 2019, , .	0.0	0
140	Galvanic Corrosion Processes of Aluminum Coupled to Iron in Chloride Solutions at Near-Neutral pH. ECS Meeting Abstracts, 2019, , .	0.0	0
141	Pit Initiation Behavior at Sulfide Particles in Sintered Stainless Steels. ECS Meeting Abstracts, 2019, , .	0.0	0
142	First-Principles Investigation of the Effect of Interstitial Carbon on Corrosion Resistance of Martensitic Medium-Carbon Steel. ECS Meeting Abstracts, 2019, , .	0.0	0
143	Visualization of pH and Clâ^' Distributions inside Crevice of Type 430 Stainless Steel. ECS Meeting Abstracts, 2019, , .	0.0	0
144	Analysis of Local Dissolution Behavior of Intermetallic Particles on Chromate-Treated AA1050 Using Micro-Electrochemical System. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
145	Inhibition of Hydrogen Entry into Pure Iron By Formation of Nitrogen Solid Solution Layer in the Surface. ECS Meeting Abstracts, 2019, , .	0.0	0
146	Pitting Corrosion Behavior at Sulfide Inclusions on Type 304 Stainless Steel with Applied Stress. ECS Meeting Abstracts, 2019, , .	0.0	0
147	Corrosion Behavior of Cocrfemnni High Entropy Alloy in Acidic Solutions. ECS Meeting Abstracts, 2019, , .	0.0	0
148	Visualizing the Crevice Corrosion Behavior of Nitrogen-Containing Stainless Steel: Changes in pH and Cl ^{ï¼} Distributions with Initiation, Growth, and Local Repassivation. Zairyo To Kankyo/ Corrosion Engineering, 2021, 70, 250-256.	0.0	0
149	Pitting Corrosion Resistance and Electrochemical Properties of Equimolar CoCrFeMnNi and Non-Equimolar Alcocrfeni High-entropy Alloys. ECS Meeting Abstracts, 2021, MA2021-02, 552-552.	0.0	0
150	Beneficial Effects of Cerium Addition to Sulfide Inclusions on Pitting Corrosion Resistance of Stainless Steels. ECS Meeting Abstracts, 2021, MA2021-02, 550-550.	0.0	0
151	Elucidation of the Growth of Filiform Corrosion of AZ91D Mg Alloy in NaCl Solution. ECS Meeting Abstracts, 2021, MA2021-02, 573-573.	0.0	0
152	Micro-electrochemical Analysis of Pit Initiation at Inclusions of Martensitic Stainless Steel. ECS Meeting Abstracts, 2021, MA2021-02, 549-549.	0.0	0
153	Effect of Mg on Intergranular Corrosion of Al-Cu Alloy. ECS Meeting Abstracts, 2021, MA2021-02, 1704-1704.	0.0	0
154	Improvement in Galvanic Corrosion Resistance between AA5083 and Pure Fe or Stainless Steels in Diluted Synthetic Seawater Due to Anodizing. ECS Meeting Abstracts, 2021, MA2021-02, 566-566.	0.0	0
155	Visualization of pH Distributions inside the Crevice of Stainless Steel in Corrosive Environments. ECS Meeting Abstracts, 2021, MA2021-02, 1703-1703.	0.0	0
156	The Effect of Cu Addition on the Corrosion Resistance of High Entropy Alloys. ECS Meeting Abstracts, 2021, MA2021-02, 1702-1702.	0.0	0
157	(Invited) Relationship between Protective Film on Sulfide Inclusions and Pitting Corrosion Resistance on Type 304 Stainless Steel Under Applied Stress. ECS Meeting Abstracts, 2020, MA2020-02, 1267-1267.	0.0	0
158	Effect of Al and Ni Contents on Anodized Oxide Film and Pitting Corrosion Resistance of Alcocrfeni High-Entropy Alloys. ECS Meeting Abstracts, 2020, MA2020-02, 1207-1207.	0.0	0
159	Galvanic Corrosion Behavior between Aluminum and Iron in Chloride Solutions at Near-Neutral pH and Corrosion Prevention By Anodizing. ECS Meeting Abstracts, 2020, MA2020-02, 1251-1251.	0.0	0
160	(Invited) Effect of Cr Concentration on Dissolution of (Mn,Cr)S Inclusions in Stainless Steel. ECS Meeting Abstracts, 2020, MA2020-02, 1269-1269.	0.0	0
161	(Invited) Beneficial Role of Interstitial Carbon on Corrosion Resistance of Carbon Steels. ECS Meeting Abstracts, 2020, MA2020-02, 1270-1270.	0.0	0
162	(Invited) Micro-Electrochemistry of Pit Initiation at Non-Metallic Inclusions of Stainless Steels and Roles of Alloying Elements in Improving Corrosion Resistance. ECS Meeting Abstracts, 2020, MA2020-02, 1208-1208.	0.0	0

#	Article	IF	CITATIONS
163	Fabrication of Mo-Dispersed Type 304L Stainless Steel By Spark Plasma Sintering and Its Corrosion Resistance in 0.1 M NaCl. ECS Meeting Abstracts, 2020, MA2020-02, 3558-3558.	0.0	Ο
164	Elucidation of the Initiation of Pitting Corrosion and the Growth of Filiform Corrosion of AZ91D in Aqueous NaCl Electrolyte. ECS Meeting Abstracts, 2020, MA2020-02, 3561-3561.	0.0	0
165	In Situ Observation of Pitting Corrosion on AA1050 Under Open Circuit Conditions. ECS Meeting Abstracts, 2020, MA2020-02, 1247-1247.	0.0	0
166	Fabrication of Type 304L Containing Mo-rich Areas and Corrosion Behavior. ECS Meeting Abstracts, 2021, MA2021-02, 551-551.	0.0	0
167	Effect of pH Change on the Electrochemical Behavior of Intermetallic Particles in AA1050 Aluminum. ECS Meeting Abstracts, 2021, MA2021-02, 572-572.	0.0	Ο
168	Evaluating the Corrosion Resistance of AA7075 Containing Mn-Rich Phases Fabricated By Spark Plasma Sintering. ECS Meeting Abstracts, 2021, MA2021-02, 1700-1700.	0.0	0
169	Role of Retained Austenite in Corrosion Resistance of Si-Mn Steel. ECS Meeting Abstracts, 2021, MA2021-02, 558-558.	0.0	Ο
170	Effect of Alloying Elements on Pit Growth in AA7075. ECS Meeting Abstracts, 2020, MA2020-02, 3559-3559.	0.0	0