
Walter Herzog

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1585104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brand-Specific Leadership: Turning Employees into Brand Champions. Journal of Marketing, 2009, 73, 122-142.	11.3	464
2	Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity. Frontiers in Physiology, 2018, 9, 112.	2.8	182
3	The biomechanics of spinal manipulation. Journal of Bodywork and Movement Therapies, 2010, 14, 280-286.	1.2	142
4	Small-Sample Robust Estimators of Noncentrality-Based and Incremental Model Fit. Structural Equation Modeling, 2009, 16, 1-27.	3.8	130
5	Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. Journal of Applied Physiology, 2014, 116, 1407-1417.	2.5	129
6	Skeletal muscle mechanics, energetics and plasticity. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 108.	4.6	99
7	The Model-Size Effect on Traditional and Modified Tests of Covariance Structures. Structural Equation Modeling, 2007, 14, 361-390.	3.8	97
8	Protective effect of prebiotic and exercise intervention on knee health in a rat model of diet-induced obesity. Scientific Reports, 2019, 9, 3893.	3.3	95
9	The multiple roles of titin in muscle contraction and force production. Biophysical Reviews, 2018, 10, 1187-1199.	3.2	92
10	Titin force is enhanced in actively stretched skeletal muscle. Journal of Experimental Biology, 2014, 217, 3629-36.	1.7	90
11	A new paradigm for muscle contraction. Frontiers in Physiology, 2015, 6, 174.	2.8	87
12	Nonlocalized postactivation performance enhancement (PAPE) effects in trained athletes: a pilot study. Applied Physiology, Nutrition and Metabolism, 2017, 42, 1122-1125.	1.9	86
13	A Novel Three-Filament Model of Force Generation in Eccentric Contraction of Skeletal Muscles. PLoS ONE, 2015, 10, e0117634.	2.5	84
14	The role of titin in eccentric muscle contraction. Journal of Experimental Biology, 2014, 217, 2825-2833.	1.7	79
15	In vivo Sarcomere Lengths and Sarcomere Elongations Are Not Uniform across an Intact Muscle. Frontiers in Physiology, 2016, 7, 187.	2.8	73
16	History dependence of skeletal muscle force production: Implications for movement control. Human Movement Science, 2004, 23, 591-604.	1.4	72
17	Excursion is important in regulating sarcomere number in the growing rabbit tibialis anterior. Journal of Physiology, 1998, 508, 267-280.	2.9	67
18	The stretch-shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis. Physiological Reports, 2015, 3, e12401.	1.7	65

#	Article	IF	CITATIONS
19	The role of muscles in joint degeneration and osteoarthritis. Journal of Biomechanics, 2007, 40, S54-S63.	2.1	61
20	Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium. European Biophysics Journal, 2013, 42, 301-307.	2.2	57
21	Decreased force enhancement in skeletal muscle sarcomeres with a deletion in titin. Journal of Experimental Biology, 2016, 219, 1311-6.	1.7	52
22	Mysteries of Muscle Contraction. Journal of Applied Biomechanics, 2008, 24, 1-13.	0.8	49
23	History dependence of the electromyogram: Implications for isometric steady-state EMG parameters following a lengthening or shortening contraction. Journal of Electromyography and Kinesiology, 2016, 27, 30-38.	1.7	47
24	Reduction in single muscle fiber rate of force development with aging is not attenuated in world class older masters athletes. American Journal of Physiology - Cell Physiology, 2016, 310, C318-C327.	4.6	46
25	Skeletal muscle mechanics: questions, problems and possible solutions. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 98.	4.6	45
26	Does residual force enhancement increase with increasing stretch magnitudes?. Journal of Biomechanics, 2009, 42, 1488-1492.	2.1	44
27	Force depression in human quadriceps femoris following voluntary shortening contractions. Journal of Applied Physiology, 1999, 87, 1651-1655.	2.5	43
28	Why are muscles strong, and why do they require little energy in eccentric action?. Journal of Sport and Health Science, 2018, 7, 255-264.	6.5	43
29	THE EFFECTS OF PARALLEL AND SERIES ELASTIC COMPONENTS ON THE ACTIVE CAT SOLEUS FORCE-LENGTH RELATIONSHIP. Journal of Mechanics in Medicine and Biology, 2009, 09, 105-122.	0.7	42
30	Human skeletal muscle fibre types and force: velocity properties. European Journal of Applied Physiology and Occupational Physiology, 1993, 67, 499-506.	1.2	41
31	Effect of number of stimuli and timing of twitch application on variability in interpolated twitch torque. Journal of Applied Physiology, 2001, 90, 1036-1040.	2.5	37
32	The role of sarcomere length non-uniformities in residual force enhancement of skeletal muscle myofibrils. Royal Society Open Science, 2016, 3, 150657.	2.4	36
33	In Vivo Sarcomere Lengths Become More Non-uniform upon Activation in Intact Whole Muscle. Frontiers in Physiology, 2017, 8, 1015.	2.8	33
34	Shortening-induced torque depression in old men: Implications for age-related power loss. Experimental Gerontology, 2014, 57, 75-80.	2.8	32
35	Extracellular matrix integrity affects the mechanical behaviour of in-situ chondrocytes under compression. Journal of Biomechanics, 2014, 47, 1004-1013.	2.1	31
36	The problem with skeletal muscle series elasticity. BMC Biomedical Engineering, 2019, 1, 28.	2.6	31

Walter Herzog

#	Article	IF	CITATIONS
37	Single sarcomere contraction dynamics in a whole muscle. Scientific Reports, 2018, 8, 15235.	3.3	30
38	The sarcomere force-length relationship in an intact muscle-tendon unit. Journal of Experimental Biology, 2020, 223, .	1.7	30
39	Extent of motor unit activation in the quadriceps muscles of healthy subjects. Muscle and Nerve, 1996, 19, 1046-1048.	2.2	29
40	Shortening-induced force depression is modulated in a time- and speed-dependent manner following a stretch-shortening cycle. Physiological Reports, 2017, 5, e13279.	1.7	29
41	Convex Fung-type potentials for biological tissues. Meccanica, 2008, 43, 279-288.	2.0	28
42	Energy cost of isometric force production after active shortening in skinned muscle fibres. Journal of Experimental Biology, 2017, 220, 1509-1515.	1.7	28
43	Machine Learning Classification of Articular Cartilage Integrity Using Near Infrared Spectroscopy. Cellular and Molecular Bioengineering, 2020, 13, 219-228.	2.1	25
44	Titin force enhancement following active stretch of skinned skeletal muscle fibres. Journal of Experimental Biology, 2017, 220, 3110-3118.	1.7	24
45	In vivo muscle force and muscle power during near-maximal frog jumps. PLoS ONE, 2017, 12, e0173415.	2.5	24
46	The mechanics of agonistic muscles. Journal of Biomechanics, 2018, 79, 15-20.	2.1	22
47	Passive force enhancement in striated muscle. Journal of Applied Physiology, 2019, 126, 1782-1789.	2.5	22
48	Optimal length, calcium sensitivity, and twitch characteristics of skeletal muscles from mdm mice with a deletion in N2A titin. Journal of Experimental Biology, 2019, 222, .	1.7	22
49	Monitoring the Return to Sport Transition After ACL Injury: An Alpine Ski Racing Case Study. Frontiers in Sports and Active Living, 2020, 2, 12.	1.8	22
50	Skeletal Muscle in Cerebral Palsy: From Belly to Myofibril. Frontiers in Neurology, 2021, 12, 620852.	2.4	22
51	Current Understanding of Residual Force Enhancement: Cross-Bridge Component and Non-Cross-Bridge Component. International Journal of Molecular Sciences, 2019, 20, 5479.	4.1	21
52	Eccentric resistance training of the knee extensor muscle: Training programs and neuromuscular adaptations. Isokinetics and Exercise Science, 2015, 23, 183-198.	0.4	20
53	In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions. PLoS ONE, 2016, 11, e0147547.	2.5	20
54	Triceps Surae Muscle Architecture Adaptations to Eccentric Training. Frontiers in Physiology, 2019, 10, 1456.	2.8	20

#	Article	IF	CITATIONS
55	Does stretching velocity affect residual force enhancement?. Journal of Biomechanics, 2019, 89, 143-147.	2.1	19
56	Joint Mechanics in Osteoarthritis. Novartis Foundation Symposium, 2008, , 79-99.	1.1	18
57	Intermittent stretch training of rabbit plantarflexor muscles increases soleus mass and serial sarcomere number. Journal of Applied Physiology, 2015, 118, 1467-1473.	2.5	18
58	Prediction of Stress Shielding Around Orthopedic Screws: Time-Dependent Bone Remodeling Analysis Using Finite Element Approach. Journal of Medical and Biological Engineering, 2015, 35, 545-554.	1.8	18
59	Force depression following a stretch-shortening cycle is independent of stretch peak force and work performed during shortening. Scientific Reports, 2018, 8, 1534.	3.3	18
60	Multiparametric MR imaging reveals early cartilage degeneration at 2 and 8 weeks after ACL transection in a rabbit model. Journal of Orthopaedic Research, 2020, 38, 1974-1986.	2.3	18
61	Internal Carotid Artery Strains During High-Speed, Low-Amplitude Spinal Manipulations of the Neck. Journal of Manipulative and Physiological Therapeutics, 2015, 38, 664-671.	0.9	17
62	Diet-induced obesity leads to pro-inflammatory alterations to the vitreous humour of the eye in a rat model. Inflammation Research, 2018, 67, 139-146.	4.0	17
63	Quantifying the Effects of Different Treadmill Training Speeds and Durations on the Health of Rat Knee Joints. Sports Medicine - Open, 2018, 4, 15.	3.1	17
64	Anterior cruciate ligament transection alters the n-3/n-6 fatty acid balance in the lapine infrapatellar fat pad. Lipids in Health and Disease, 2019, 18, 67.	3.0	17
65	Anterior cruciate ligament transection of rabbits alters composition, structure and biomechanics of articular cartilage and chondrocyte deformation 2†weeks post-surgery in a site-specific manner. Journal of Biomechanics, 2020, 98, 109450.	2.1	17
66	Reduced knee adduction moments for management of knee osteoarthritis:. Gait and Posture, 2016, 50, 60-68.	1.4	16
67	Residual force enhancement following shortening is speed-dependent. Scientific Reports, 2016, 6, 21513.	3.3	16
68	Unfolding of membrane ruffles of in situ chondrocytes under compressive loads. Journal of Orthopaedic Research, 2017, 35, 304-310.	2.3	16
69	Reply from Walter Herzog (on behalf of the authors) and Tim Leonard. Journal of Physiology, 2007, 578, 617-620.	2.9	15
70	On sarcomere length stability during isometric and post-active-stretch isometric contractions. Journal of Experimental Biology, 2019, 222, .	1.7	15
71	Chronic uphill and downhill exercise protocols do not lead to sarcomerogenesis in mouse skeletal muscle. Journal of Biomechanics, 2020, 98, 109469.	2.1	15
72	Decay of force transients following active stretch is slower in older than young men: Support for a structural mechanism contributing to residual force enhancement in old age. Journal of Biomechanics, 2014, 47, 3423-3427.	2.1	14

#	Article	IF	CITATIONS
73	Effect of strain rate on transient local strain variations in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 95, 60-66.	3.1	14
74	Residual Force Enhancement Is Preserved for Conditions of Reduced Contractile Force. Medicine and Science in Sports and Exercise, 2018, 50, 1186-1191.	0.4	13
75	Prebiotic and Exercise Do Not Alter Knee Osteoarthritis in a Rat Model of Established Obesity. Cartilage, 2021, 13, 1456S-1466S.	2.7	12
76	Joint mechanics in osteoarthritis. Novartis Foundation Symposium, 2004, 260, 79-95; discussion 95-9, 100-4, 277-9.	1.1	12
77	Three-dimensional micro-scale strain mapping in living biological soft tissues. Acta Biomaterialia, 2018, 70, 260-269.	8.3	11
78	Influence of stretch magnitude on the stretch-shortening cycle in skinned fibres. Journal of Experimental Biology, 2019, 222, .	1.7	11
79	Contribution of individual quadriceps muscles to knee joint mechanics. Journal of Experimental Biology, 2019, 222, .	1.7	11
80	Reflections on obesity, exercise, and musculoskeletal health. Journal of Sport and Health Science, 2020, 9, 108-109.	6.5	11
81	Residual force enhancement in human skeletal muscles: A systematic review and meta-analysis. Journal of Sport and Health Science, 2022, 11, 94-103.	6.5	11
82	MUSCLE-INDUCED PATELLOFEMORAL JOINT LOADING RAPIDLY AFFECTS CARTILAGE mRNA LEVELS IN A SITE SPECIFIC MANNER. Journal of Musculoskeletal Research, 2004, 08, 1-12.	0.2	10
83	An optimal control solution to the predictive dynamics of cycling. Sport Sciences for Health, 2017, 13, 381-393.	1.3	10
84	Functional properties of chondrocytes and articular cartilage using optical imaging to scanning probe microscopy. Journal of Orthopaedic Research, 2018, 36, 620-631.	2.3	10
85	Residual Force Enhancement Is Attenuated in a Shortening Magnitude-dependent Manner. Medicine and Science in Sports and Exercise, 2018, 50, 2007-2014.	0.4	10
86	A compression system for studying depth-dependent mechanical properties of articular cartilage under dynamic loading conditions. Medical Engineering and Physics, 2018, 60, 103-108.	1.7	10
87	Automated analysis of rabbit knee calcified cartilage morphology using microâ€computed tomography and deep learning. Journal of Anatomy, 2021, 239, 251-263.	1.5	10
88	Effect of Active Lengthening and Shortening on Small-Angle X-ray Reflections in Skinned Skeletal Muscle Fibres. International Journal of Molecular Sciences, 2021, 22, 8526.	4.1	10
89	The effects of training on fatigue and twitch potentiationin human skeletal muscle. European Journal of Sport Science, 2001, 1, 1-8.	2.7	9
90	Cartilage and chondrocyte response to extreme muscular loading and impact loading: Can in vivo pre-load decrease impact-induced cell death?. Clinical Biomechanics, 2015, 30, 537-545.	1.2	9

#	Article	IF	CITATIONS
91	Relationship of muscle morphology to hip displacement in cerebral palsy: a pilot study investigating changes intrinsic to the sarcomere. Journal of Orthopaedic Surgery and Research, 2019, 14, 187.	2.3	9
92	Stiffness of hip adductor myofibrils is decreased in children with spastic cerebral palsy. Journal of Biomechanics, 2019, 87, 100-106.	2.1	9
93	Residual and passive force enhancement in skinned cardiac fibre bundles. Journal of Biomechanics, 2020, 109, 109953.	2.1	9
94	The mysteries of eccentric muscle action. Journal of Sport and Health Science, 2018, 7, 253-254.	6.5	8
95	Effects of macro-cracks on the load bearing capacity of articular cartilage. Biomechanics and Modeling in Mechanobiology, 2019, 18, 1371-1381.	2.8	8
96	Evidence for Muscle Cell-Based Mechanisms of Enhanced Performance in Stretch-Shortening Cycle in Skeletal Muscle. Frontiers in Physiology, 2020, 11, 609553.	2.8	8
97	Does eccentric exercise stimulate sarcomerogenesis?. Journal of Sport and Health Science, 2022, 11, 40-42.	6.5	8
98	Eccentric vs. concentric muscle contraction: That is the question. Journal of Sport and Health Science, 2017, 6, 128-129.	6.5	7
99	Fairness in Olympic sports: How can we control the increasing complexity of doping use in high performance sports?. Journal of Sport and Health Science, 2017, 6, 47.	6.5	7
100	Do recreational team sports provide fitness and health benefits?. Journal of Sport and Health Science, 2018, 7, 127-128.	6.5	7
101	Force depression following a stretchâ€shortening cycle depends on the amount of residual force enhancement established in the initial stretch phase. Physiological Reports, 2019, 7, e14188.	1.7	7
102	Why do muscles lose torque potential when activated within their agonistic group?. Journal of Experimental Biology, 2020, 223, .	1.7	7
103	Differences in stretch-shortening cycle and residual force enhancement between muscles. Journal of Biomechanics, 2020, 112, 110040.	2.1	7
104	Mechanical adaptations of skinned cardiac muscle in response to dietary-induced obesity during adolescence in rats. Applied Physiology, Nutrition and Metabolism, 2020, 45, 893-901.	1.9	7
105	Early changes in osteochondral tissues in a rabbit model of postâ€ŧraumatic osteoarthritis. Journal of Orthopaedic Research, 2021, 39, 2556-2567.	2.3	7
106	Age-related reductions in the number of serial sarcomeres contribute to shorter fascicle lengths but not elevated passive tension. Journal of Experimental Biology, 2021, 224, .	1.7	7
107	What Can We Learn from Single Sarcomere and Myofibril Preparations?. Frontiers in Physiology, 2022, 13, 837611.	2.8	7
108	A musculoskeletal finite element model of rat knee joint for evaluating cartilage biomechanics during gait. PLoS Computational Biology, 2022, 18, e1009398.	3.2	7

#	Article	IF	CITATIONS
109	Alterations in patellofemoral kinematics following vastus medialis transection in the anterior cruciate ligament deficient rabbit knee. Clinical Biomechanics, 2014, 29, 577-582.	1.2	6
110	Letter to the editor: Comments on Cornachione et al. (2016): "The increase in non-cross-bridge forces after stretch of activated striated muscle is related to titin isoformsâ€: American Journal of Physiology - Cell Physiology, 2016, 311, C158-C159.	4.6	6
111	Orthotropic hydraulic permeability of arrays of parallel cylinders. Physical Review E, 2017, 96, 033112.	2.1	6
112	Iterative and discrete reconstruction in the evaluation of the rabbit model of osteoarthritis. Scientific Reports, 2018, 8, 12051.	3.3	6
113	Sarcomere Lengths Become More Uniform Over Time in Intact Muscle-Tendon Unit During Isometric Contractions. Frontiers in Physiology, 2020, 11, 448.	2.8	6
114	Mechanical function of cardiac fibre bundles is partly protected by exercise in response to diet-induced obesity in rats. Applied Physiology, Nutrition and Metabolism, 2021, 46, 46-54.	1.9	6
115	Forecasting neuromuscular recovery after anterior cruciate ligament injury: Athlete recovery profiles with generalized additive modeling. Journal of Orthopaedic Research, 2022, 40, 2803-2812.	2.3	6
116	Running Injuries. Exercise and Sport Sciences Reviews, 2012, 40, 59-60.	3.0	5
117	Muscle strategies for leg extensions on a "Reformer―apparatus. Journal of Electromyography and Kinesiology, 2015, 25, 260-264.	1.7	5
118	Finite element modeling of finite deformable, biphasic biological tissues with transversely isotropic statistically distributed fibers: toward a practical solution. Zeitschrift Fur Angewandte Mathematik Und Physik, 2016, 67, 1.	1.4	5
119	The sag response in human muscle contraction. European Journal of Applied Physiology, 2018, 118, 1063-1077.	2.5	5
120	Mitigating the bilateral deficit: reducing neural deficits through residual force enhancement and activation reduction. European Journal of Applied Physiology, 2018, 118, 1911-1919.	2.5	5
121	The stretch-shortening cycle effect is prominent in the inhibited force state. Journal of Biomechanics, 2021, 115, 110136.	2.1	5
122	Increased force following muscle stretching and simultaneous fibre shortening: Residual force enhancement or force depression – That is the question?. Journal of Biomechanics, 2021, 116, 110216.	2.1	5
123	Chondrocyte morphology as an indicator of collagen network integrity. Connective Tissue Research, 2022, 63, 319-328.	2.3	5
124	Attenuated Lower Limb Stretch-Shorten-Cycle Capacity in ACL Injured vs. Non-Injured Female Alpine Ski Racers: Not Just a Matter of Between-Limb Asymmetry. Frontiers in Sports and Active Living, 2022, 4, 853701.	1.8	5
125	An alternative finite element model for simulation of frictional gap. Journal of Mechanical Science and Technology, 2011, 25, 3099-3105.	1.5	4
126	The problem with running injuries. Journal of Sport and Health Science, 2016, 5, 171.	6.5	4

Walter Herzog

#	Article	IF	CITATIONS
127	Effect of cracks on the local deformations of articular cartilage. Journal of Biomechanics, 2020, 110, 109970.	2.1	4
128	Sarcomere length measurement reliability in single myofibrils. Journal of Biomechanics, 2021, 126, 110628.	2.1	4
129	Deformation behaviors and mechanical impairments of tissue cracks in immature and mature cartilages. Journal of Orthopaedic Research, 2022, 40, 2103-2112.	2.3	4
130	Age-related maintenance of eccentric strength: a study of temperature dependence. Age, 2016, 38, 43.	3.0	3
131	The "Journal of Functional Morphology and Kinesiology―Journal Club Series: Highlights on Recent Papers in Exercise and Osteoarthritis. Journal of Functional Morphology and Kinesiology, 2019, 4, 7.	2.4	3
132	Contribution of the Achilles tendon to force potentiation in stretch-shortening cycle. Journal of Experimental Biology, 2019, 222, .	1.7	3
133	Reflex Responses of Neck, Back, and Limb Muscles to High-Velocity, Low-Amplitude Manual Cervical and Upper Thoracic Spinal Manipulation of Asymptomatic Individuals—A Descriptive Study. Journal of Manipulative and Physiological Therapeutics, 2019, 42, 572-581.	0.9	3
134	Differences in force-time parameters and electromyographic characteristics of two high-velocity, low-amplitude spinal manipulations following one another in quick succession. Chiropractic & Manual Therapies, 2020, 28, 67.	1.5	3
135	Chondrocyte Deformations Under Mild Dynamic Loading Conditions. Annals of Biomedical Engineering, 2021, 49, 846-857.	2.5	3
136	Moderate aerobic exercise, but not dietary prebiotic fibre, attenuates losses to mechanical property integrity of tail tendons in a rat model of diet-induced obesity. Journal of Biomechanics, 2021, 129, 110798.	2.1	3
137	Hip torques and the effect of posture in side-stepping with elastic resistance. Gait and Posture, 2022, 93, 119-125.	1.4	3
138	Alteration of Strain Distribution in Distal Tibia After Triple Arthrodesis: Experimental and Finite Element Investigations. Journal of Medical and Biological Engineering, 2018, 38, 469-481.	1.8	2
139	The "Journal of Functional Morphology and Kinesiology―Journal Club Series: Highlights on Recent Papers in Corrective Exercise. Journal of Functional Morphology and Kinesiology, 2020, 5, 74.	2.4	2
140	The effects of inorganic phosphate on contractile function of slow skeletal muscle fibres are length-dependent. Biochemical and Biophysical Research Communications, 2020, 533, 818-823.	2.1	2
141	Cardiac ventricular muscle mechanical properties through the first year of life in Sprague-Dawley rats. Mechanisms of Ageing and Development, 2020, 192, 111359.	4.6	2
142	Electromechanical delay of the hamstrings following semitendinosus tendon autografts in return to competition athletes. European Journal of Applied Physiology, 2021, 121, 1849-1858.	2.5	2
143	Contractility of permeabilized rat vastus intermedius muscle fibres following high-fat, high-sucrose diet consumption. Applied Physiology, Nutrition and Metabolism, 2021, 46, 1389-1399.	1.9	2
144	Development of a Porcine Model to Assess the Effect of In Situ Knee Joint Loading on Site-Specific Cartilage Gene Expression. Journal of Biomechanical Engineering, 2022, 144, .	1.3	2

#	Article	IF	CITATIONS
145	A Novel Right Ventricular Volume and Pressure Loaded Piglet Heart Model for the Study of Tricuspid Valve Function Journal of Visualized Experiments, 2020, , .	0.3	2
146	Fast stretching of skeletal muscle fibres abolishes residual force enhancement. Journal of Experimental Biology, 2022, 225, .	1.7	2
147	Running slow or running fast; that is the question: The merits of high-intensity interval training. Journal of Sport and Health Science, 2017, 6, 48.	6.5	1
148	Editorial re: Could sport be part … by Ring-Dimitriou et al Journal of Sport and Health Science, 2019, 8, 348-349.	6.5	1
149	Contractile history affects sag and boost properties of unfused tetanic contractions in human quadriceps muscles. European Journal of Applied Physiology, 2021, 121, 645-658.	2.5	1
150	Energy Cost of Force Production After a Stretch-Shortening Cycle in Skinned Muscle Fibers: Does Muscle Efficiency Increase?. Frontiers in Physiology, 2020, 11, 567538.	2.8	1
151	The secrets to running economy. Journal of Sport and Health Science, 2022, 11, 273-274.	6.5	1
152	Effect of cells on spatial quantification of proteoglycans in articular cartilage of small animals. Connective Tissue Research, 2022, 63, 603-614.	2.3	1
153	Residual force enhancement is attenuated for quick stretch conditions. Journal of Biomechanics, 2022, 136, 111076.	2.1	1
154	The Effects of Lead Leg Selection on Bilateral Landing Forceâ€Time Characteristics: Return to Sport Testing Implications. Scandinavian Journal of Medicine and Science in Sports, 2022, , .	2.9	1
155	The Nonintuitive Contributions of Individual Quadriceps Muscles to Patellar Tracking. Journal of Applied Biomechanics, 2022, , 1-9.	0.8	1
156	Regarding: "Examining the relationship between sport and health among USA women: An analysis of the Behavioral Risk Factor Surveillance System―by Pharr and Lough. Journal of Sport and Health Science, 2016, 5, 402.	6.5	0
157	The influence of maximal and submaximal cyclic concentric and eccentric exercise on chondrocyte death and synovial fluid proteins in the rabbit knee. Clinical Biomechanics, 2020, 78, 105095.	1.2	0
158	Consumption of a high-fat-high-sucrose diet partly diminishes mechanical and structural adaptations of cardiac muscle following resistance training. Physical Activity and Nutrition, 2021, 25, 8-14.	0.8	0