Paul A Lindahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1584764/publications.pdf

Version: 2024-02-01

125 papers 5,119 citations

⁷⁶²⁹⁴
40
h-index

64 g-index

127 all docs

127 docs citations

127 times ranked

2895 citing authors

#	Article	IF	CITATIONS
1	Yeast cells depleted of the frataxin homolog Yfh1 redistribute cellular iron: Studies using Mössbauer spectroscopy and mathematical modeling. Journal of Biological Chemistry, 2022, 298, 101921.	1.6	1
2	Mössbauer and LC-ICP-MS investigation of iron trafficking between vacuoles and mitochondria in vma2Δ Saccharomyces cerevisiae. Journal of Biological Chemistry, 2021, 296, 100141.	1.6	8
3	Thermal decarboxylation for the generation of hierarchical porosity in isostructural metal–organic frameworks containing open metal sites. Materials Advances, 2021, 2, 5487-5493.	2.6	14
4	Low-molecular-mass labile metal pools in Escherichia coli: advances using chromatography and mass spectrometry. Journal of Biological Inorganic Chemistry, 2021, 26, 479-494.	1.1	16
5	Cis-Divacant Octahedral Fe(II) in a Dimensionally Reduced Family of 2-(Pyridin-2-yl)pyrrolide Complexes. Inorganic Chemistry, 2021, 60, 15617-15626.	1.9	1
6	The Pyrococcus furiosus ironome is dominated by [Fe4S4]2+ clusters or thioferrate-like iron depending on the availability of elemental sulfur. Journal of Biological Chemistry, 2021, 296, 100710.	1.6	2
7	Direct Detection of the Labile Nickel Pool in <i>Escherichia coli</i> Pools. Journal of the American Chemical Society, 2021, 143, 18571-18580.	6.6	4
8	Chromatographic detection of low-molecular-mass metal complexes in the cytosol of <i>Saccharomyces cerevisiae</i> . Metallomics, 2020, 12, 1094-1105.	1.0	14
9	A Sec14-like phosphatidylinositol transfer protein paralog defines a novel class of heme-binding proteins. ELife, 2020, 9, .	2.8	10
10	Isolated <i>Saccharomyces cerevisiae</i> vacuoles contain low-molecular-mass transition-metal polyphosphate complexes. Metallomics, 2019, 11, 1298-1309.	1.0	37
11	A mathematical model of iron import and trafficking in wild-type and Mrs3/4Î"Î" yeast cells. BMC Systems Biology, 2019, 13, 23.	3.0	10
12	A comprehensive mechanistic model of iron metabolism in <i>Saccharomyces cerevisiae</i> Metallomics, 2019, 11, 1779-1799.	1.0	17
13	COA6 Is Structurally Tuned to Function as a Thiol-Disulfide Oxidoreductase in Copper Delivery to Mitochondrial Cytochrome c Oxidase. Cell Reports, 2019, 29, 4114-4126.e5.	2.9	37
14	The thermally induced decarboxylation mechanism of a mixed-oxidation state carboxylate-based iron metal–organic framework. Chemical Communications, 2019, 55, 12769-12772.	2.2	24
15	Low-molecular-mass iron complexes in blood plasma of iron-deficient pigs do not originate directly from nutrient iron. Metallomics, 2019, 11, 1900-1911.	1.0	9
16	Evidence that a respiratory shield in Escherichia coli protects a low-molecular-mass Fell pool from O2-dependent oxidation. Journal of Biological Chemistry, 2019, 294, 50-62.	1.6	35
17	Recovery of <i>mrs3î"mrs4î" Saccharomyces cerevisiae</i> Cells under Iron-Sufficient Conditions and the Role of Fe ₅₈₀ . Biochemistry, 2018, 57, 672-683.	1.2	18
18	Mitochondria Export Sulfur Species Required for Cytosolic tRNA Thiolation. Cell Chemical Biology, 2018, 25, 738-748.e3.	2.5	28

#	Article	IF	CITATIONS
19	Low-molecular-mass iron in healthy blood plasma is not predominately ferric citrate. Metallomics, 2018, 10, 802-817.	1.0	27
20	Structures, Interconversions, and Spectroscopy of Iron Carbonyl Clusters with an Interstitial Carbide: Localized Metal Center Reduction by Overall Cluster Oxidation. Inorganic Chemistry, 2017, 56, 5998-6012.	1.9	26
21	Mössbauer Spectra of Mouse Hearts Reveal Age-dependent Changes in Mitochondrial and Ferritin Iron Levels. Journal of Biological Chemistry, 2017, 292, 5546-5554.	1.6	24
22	6. The utility of MÃ \P ssbauer spectroscopy in eukaryotic cell biology and animal physiology. , 2017, , 163-190.		1
23	Ferric ions accumulate in the walls of metabolically inactivating Saccharomyces cerevisiae cells and are reductively mobilized during reactivation. Metallomics, 2016, 8, 692-708.	1.0	9
24	Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field. Biochemistry, 2016, 55, 4140-4153.	1.2	44
25	4 Nickel-Carbon Bonds in Acetyl-Coenzyme A Synthases/Carbon Monoxide Dehydrogenases. , 2015, , 133-150.		0
26	Mitochondrial Iron-Sulfur Cluster Activity and Cytosolic Iron Regulate Iron Traffic in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2015, 290, 26968-26977.	1.6	21
27	Kinetics of Iron Import into Developing Mouse Organs Determined by a Pup-swapping Method*. Journal of Biological Chemistry, 2015, 290, 520-528.	1.6	11
28	Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria. Biochemistry, 2015, 54, 3442-3453.	1.2	31
29	Speciation of iron in mouse liver during development, iron deficiency, IRP2 deletion and inflammatory hepatitis. Metallomics, 2015, 7, 93-101.	1.0	18
30	Mathematical model for positioning the FtsZ contractile ring in Escherichia coli. Journal of Mathematical Biology, 2014, 68, 911-930.	0.8	5
31	Mössbauer, EPR, and Modeling Study of Iron Trafficking and Regulation in <i>Î"ccc1</i> and <i>CCC1-up Saccharomyces cerevisiae</i> Biochemistry, 2014, 53, 2926-2940.	1.2	13
32	High-Spin Ferric Ions in <i>Saccharomyces cerevisiae</i> Vacuoles Are Reduced to the Ferrous State during Adenine-Precursor Detoxification. Biochemistry, 2014, 53, 3940-3951.	1.2	16
33	4. The utility of MÃ \P ssbauer spectroscopy in eukaryotic cell biology and animal physiology. , 2014, , 49-76.		3
34	Low-molecular-mass metal complexes in the mouse brain. Metallomics, 2013, 5, 232.	1.0	7
35	Insights into the iron-ome and manganese-ome of î"mtm1 Saccharomyces cerevisiae mitochondria. Metallomics, 2013, 5, 656.	1.0	24
36	The Lack of Synchronization between Iron Uptake and Cell Growth Leads to Iron Overload in <i>Saccharomyces cerevisiae</i> during Post-exponential Growth Modes. Biochemistry, 2013, 52, 9413-9425.	1.2	13

#	Article	IF	CITATIONS
37	Mössbauer Study and Modeling of Iron Import and Trafficking in Human Jurkat Cells. Biochemistry, 2013, 52, 7926-7942.	1.2	11
38	Iron Content of <i>Saccharomyces cerevisiae</i> Cells Grown under Iron-Deficient and Iron-Overload Conditions. Biochemistry, 2013, 52, 105-114.	1.2	50
39	Changing iron content of the mouse brain during development. Metallomics, 2012, 4, 761.	1.0	29
40	Biophysical Investigation of the Ironome of Human Jurkat Cells and Mitochondria. Biochemistry, 2012, 51, 5276-5284.	1.2	43
41	Mixed-Valence Nickel–Iron Dithiolate Models of the [NiFe]-Hydrogenase Active Site. Inorganic Chemistry, 2012, 51, 2338-2348.	1.9	67
42	Metal–metal bonds in biology. Journal of Inorganic Biochemistry, 2012, 106, 172-178.	1.5	93
43	Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase [,] . Biochemistry, 2011, 50, 1917-1927.	1.2	42
44	Biophysical Investigation of the Iron in Aft1-1 ^{up} and Gal-YAH1 <i>Saccharomyces cerevisiae</i> . Biochemistry, 2011, 50, 2660-2671.	1.2	30
45	MÃ \P ssbauer and EPR Study of Iron in Vacuoles from Fermenting <i>Saccharomyces cerevisiae</i> Biochemistry, 2011, 50, 10275-10283.	1.2	40
46	The catalase activity of diiron adenine deaminase. Protein Science, 2011, 20, 2080-2094.	3.1	14
47	Biophysical probes of iron metabolism in cells and organelles. Current Opinion in Chemical Biology, 2011, 15, 342-346.	2.8	21
48	Mathematical Model of a Cell Size Checkpoint. PLoS Computational Biology, 2010, 6, e1001036.	1.5	19
49	A Nonheme High-Spin Ferrous Pool in Mitochondria Isolated from Fermenting <i>Saccharomyces cerevisiae</i> . Biochemistry, 2010, 49, 4227-4234.	1.2	41
50	Biophysical Characterization of Iron in Mitochondria Isolated from Respiring and Fermenting Yeast. Biochemistry, 2010, 49, 5436-5444.	1.2	56
51	Mathematical modeling of a minimal protocell with coordinated growth and division. Journal of Theoretical Biology, 2009, 260, 422-429.	0.8	15
52	Chapter 15 Isolation of Saccharomyces Cerevisiae Mitochondria for Mössbauer, Epr, and Electronic Absorption Spectroscopic Analyses. Methods in Enzymology, 2009, 456, 267-285.	0.4	18
53	Novel Domain Arrangement in the Crystal Structure of a Truncated Acetyl-CoA Synthase from <i>Moorella thermoacetica</i> [,] . Biochemistry, 2009, 48, 7916-7926.	1.2	15
54	Biophysical Characterization of the Iron in Mitochondria from Atm1p-Depleted <i>Saccharomyces cerevisiae</i> . Biochemistry, 2009, 48, 9556-9568.	1.2	80

#	Article	IF	Citations
55	Nickel-carbon bonds in acetyl-coenzyme a synthases/carbon monoxide dehydrogenases. Metal Ions in Life Sciences, 2009, 6, 133-50.	2.8	3
56	Tunnel mutagenesis and Ni-dependent reduction and methylation of the α subunit of acetyl coenzyme A synthase/carbon monoxide dehydrogenase. Journal of Biological Inorganic Chemistry, 2008, 13, 771-778.	1.1	9
57	Implications of a Carboxylateâ€Bound Câ€Cluster Structure of Carbon Monoxide Dehydrogenase. Angewandte Chemie - International Edition, 2008, 47, 4054-4056.	7.2	30
58	EPR and MA¶ssbauer Spectroscopy of Intact Mitochondria Isolated from Yah1p-Depleted <i>Saccharomyces cerevisiae </i> . Biochemistry, 2008, 47, 9888-9899.	1.2	64
59	$M\tilde{A}_{ssbauer}$ Evidence for an Exchange-Coupled {[Fe ₄ S ₄] ¹⁺ Ni _p ¹⁺ } A-Cluster in Isolated \hat{I}_{sub} Subunits of Acetyl-Coenzyme A Synthase/Carbon Monoxide Dehydrogenase. Journal of the American Chemical Society, 2008, 130, 6712-6713.	6.6	27
60	Kinetic Modeling of the Assembly, Dynamic Steady State, and Contraction of the FtsZ Ring in Prokaryotic Cytokinesis. PLoS Computational Biology, 2008, 4, e1000102.	1.5	41
61	Nickel-Dependent Oligomerization of the Alpha Subunit of Acetyl-Coenzyme A Synthase/Carbon Monoxide Dehydrogenase. Biochemistry, 2007, 46, 11606-11613.	1.2	10
62	Acetyl-coenzyme A Synthases and Nickel-Containing Carbon Monoxide Dehydrogenases., 2007,, 357-415.		13
63	Whole-cell modeling framework in which biochemical dynamics impact aspects of cellular geometry. Journal of Theoretical Biology, 2007, 244, 154-166.	0.8	15
64	Electron paramagnetic resonance and Mössbauer spectroscopy of intact mitochondria from respiring Saccharomyces cerevisiae. Journal of Biological Inorganic Chemistry, 2007, 12, 1029-1053.	1.1	35
65	Kinetics of CO Insertion and Acetyl Group Transfer Steps, and a Model of the Acetyl-CoA Synthase Catalytic Mechanism. Journal of the American Chemical Society, 2006, 128, 12331-12338.	6.6	47
66	Mössbauer and EPR Study of Recombinant Acetyl-CoA Synthase fromMoorella thermoaceticaâ€. Biochemistry, 2006, 45, 8674-8685.	1.2	38
67	Function of the tunnel in acetylcoenzyme A synthase/carbon monoxide dehydrogenase. Journal of Biological Inorganic Chemistry, 2006, 11, 371-378.	1.1	31
68	LdpA: a component of the circadian clock senses redox state of the cell. EMBO Journal, 2005, 24, 1202-1210.	3.5	119
69	The Tunnel of Acetyl-Coenzyme A Synthase/Carbon Monoxide Dehydrogenase Regulates Delivery of CO to the Active Site. Journal of the American Chemical Society, 2005, 127, 5833-5839.	6.6	56
70	Stepwise Evolution of Nonliving to Living Chemical Systems. Origins of Life and Evolution of Biospheres, 2004, 34, 371-389.	0.8	15
71	Autocatalytic activation of acetyl-CoA synthase. Journal of Biological Inorganic Chemistry, 2004, 9, 316-322.	1.1	3
72	Acetyl-coenzyme A synthase: the case for a NipO-based mechanism of catalysis. Journal of Biological Inorganic Chemistry, 2004, 9, 516-524.	1.1	97

#	Article	IF	CITATIONS
73	A framework for whole-cell mathematical modeling. Journal of Theoretical Biology, 2004, 231, 581-596.	0.8	21
74	Effect of Sodium Sulfide on Ni-Containing Carbon Monoxide Dehydrogenases. Journal of the American Chemical Society, 2004, 126, 9094-9100.	6.6	43
75	Evidence for a Proton Transfer Network and a Required Persulfide-Bond-Forming Cysteine Residue in Ni-Containing Carbon Monoxide Dehydrogenases. Biochemistry, 2004, 43, 5728-5734.	1.2	62
76	Structures and Energetics of Models for the Active Site of Acetyl-Coenzyme A Synthase:Â Role of Distal and Proximal Metals in Catalysis. Journal of the American Chemical Society, 2004, 126, 3410-3411.	6.6	59
77	Effect of Zn on Acetyl Coenzyme A Synthase: Evidence for a Conformational Change in the α Subunit during Catalysis. Journal of the American Chemical Society, 2004, 126, 5954-5955.	6.6	22
78	Carbon Monoxide Dehydrogenase from Rhodospirillum rubrum:  Effect of Redox Potential on Catalysis. Biochemistry, 2004, 43, 1552-1559.	1.2	27
79	Dynamic responses of protein homeostatic regulatory mechanisms to perturbations from steady state. Journal of Theoretical Biology, 2003, 222, 407-423.	0.8	11
80	Identification and preliminary characterization of AcsF, a putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum. Journal of Inorganic Biochemistry, 2003, 93, 33-40.	1.5	34
81	Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open α subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nature Structural and Molecular Biology, 2003, 10, 271-279.	3.6	418
82	Evaluation of Multivalent Dendrimers Based on Melamine:Â Kinetics of Thiolâ^Disulfide Exchange Depends on the Structure of the Dendrimer. Journal of the American Chemical Society, 2003, 125, 5086-5094.	6.6	54
83	Reduction and Methyl Transfer Kinetics of the $\hat{l}\pm$ Subunit from Acetyl Coenzyme A Synthase. Journal of the American Chemical Society, 2003, 125, 318-319.	6.6	51
84	Inactivation of Acetyl-CoA Synthase/Carbon Monoxide Dehydrogenase by Copper. Journal of the American Chemical Society, 2003, 125, 9316-9317.	6.6	75
85	Stoichiometric Redox Titrations of Complex Metalloenzymes. Methods in Enzymology, 2002, 354, 296-309.	0.4	2
86	Genetic Construction of Truncated and Chimeric Metalloproteins Derived from the $\hat{l}\pm$ Subunit of Acetyl-CoA Synthase from Clostridium thermoaceticum. Journal of the American Chemical Society, 2002, 124, 8667-8672.	6.6	21
87	Stopped-Flow Kinetics of Methyl Group Transfer between the Corrinoid-Iron-Sulfur Protein and Acetyl-Coenzyme A Synthase from Clostridium thermoaceticum. Journal of the American Chemical Society, 2002, 124, 6277-6284.	6.6	60
88	The Ni-Containing Carbon Monoxide Dehydrogenase Family:  Light at the End of the Tunnel?. Biochemistry, 2002, 41, 2097-2105.	1.2	197
89	Analysis of Protein Homeostatic Regulatory Mechanisms in Perturbed Environments at Steady State. Journal of Theoretical Biology, 2002, 215, 151-167.	0.8	6
90	Catalytic Coupling of the Active Sites in Acetyl-CoA Synthase, a Bifunctional CO-Channeling Enzymeâ€. Biochemistry, 2001, 40, 13262-13267.	1.2	48

#	Article	IF	Citations
91	Kinetic Mechanism of Acetyl-CoA Synthase:Â Steady-State Synthesis at Variable CO/CO2Pressures. Journal of the American Chemical Society, 2001, 123, 4697-4703.	6.6	36
92	The evolution of acetyl-CoA synthase. , 2001, 31, 403-434.		59
93	2,4,6-Trinitrotoluene Reduction by Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum. Applied and Environmental Microbiology, 2000, 66, 1474-1478.	1.4	72
94	Evidence of a Molecular Tunnel Connecting the Active Sites for CO2Reduction and Acetyl-CoA Synthesis in Acetyl-CoA Synthase fromClostridiumthermoaceticum. Journal of the American Chemical Society, 1999, 121, 9221-9222.	6.6	95
95	Evidence for a Proposed Intermediate Redox State in the CO/CO2Active Site of Acetyl-CoA Synthase (Carbon Monoxide Dehydrogenase) fromClostridium thermoaceticumâ€. Biochemistry, 1999, 38, 15706-15711.	1.2	32
96	Stoichiometric CO Reductive Titrations of Acetyl-CoA Synthase (Carbon Monoxide Dehydrogenase) fromClostridium thermoaceticumâ€. Biochemistry, 1999, 38, 15697-15705.	1.2	19
97	CO/CO2 Potentiometric Titrations of Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum and the Effect of CO2. Biochemistry, 1998, 37, 10016-10026.	1.2	34
98	A Multinuclear ENDOR Study of the C-Cluster in CO Dehydrogenase from Clostridium thermoaceticum:  Evidence for HxO and Histidine Coordination to the [Fe4S4] Center. Journal of the American Chemical Society, 1998, 120, 8767-8776.	6.6	91
99	Spectroscopic, Redox, and Structural Characterization of the Ni-Labile and Nonlabile Forms of the Acetyl-CoA Synthase Active Site of Carbon Monoxide Dehydrogenase. Journal of the American Chemical Society, 1998, 120, 7502-7510.	6.6	67
100	Methylation of Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum and Mechanism of Acetyl Coenzyme A Synthesis. Journal of the American Chemical Society, 1997, 119, 3959-3970.	6.6	114
101	Mössbauer and EPR Study of the Ni-Activated α-Subunit of Carbon Monoxide Dehydrogenase fromClostridium thermoaceticum. Journal of the American Chemical Society, 1997, 119, 8301-8312.	6.6	91
102	Nature of the C-Cluster in Ni-Containing Carbon Monoxide Dehydrogenases. Journal of the American Chemical Society, 1996, 118, 830-845.	6.6	131
103	Spectroscopic States of the CO Oxidation/CO2Reduction Active Site of Carbon Monoxide Dehydrogenase and Mechanistic Implicationsâ€. Biochemistry, 1996, 35, 8371-8380.	1.2	60
104	Assembly of an Exchange-Coupled [Ni:Fe4S4] Cluster in the α Metallosubunit of Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum with Spectroscopic Properties and CO-Binding Ability Mimicking Those of the Acetyl-CoA Synthase Active Site. Journal of the American Chemical Society, 1996, 118, 483-484.	6.6	40
105	Carbon Monoxide Dehydrogenase fromClostridium thermoaceticum:Â Quaternary Structure, Stoichiometry of Its SDS-Induced Dissociation, and Characterization of the Faster-Migrating Formâ€. Biochemistry, 1996, 35, 1965-1971.	1.2	37
106	Spectroelectrochemical Characterization of the Metal Centers in Carbon Monoxide Dehydrogenase (CODH) and Nickel-deficient CODH from Rhodospirillum rubrum. Journal of Biological Chemistry, 1996, 271, 7973-7977.	1.6	34
107	Decomposition of Carbon Monoxide Dehydrogenase into .alpha. Metallosubunits and a Catalytically-Active Form Consisting Primarily of .beta. Metallosubunits. Biochemistry, 1995, 34, 6037-6042.	1.2	19
108	Stoichiometric reductive titrations of Desulfovibrio gigas hydrogenase. Journal of the American Chemical Society, 1995, 117, 2565-2572.	6.6	82

#	Article	IF	Citations
109	EXAFS, EPR, and Electronic Absorption Spectroscopic Study of the .alpha. Metallo Subunit of CO Dehydrogenase from Clostridium thermoaceticum. Journal of the American Chemical Society, 1995, 117, 7065-7070.	6.6	58
110	Organization of Clusters and Internal Electron Pathways in CO Dehydrogenase from Clostridium thermoaceticum: Relevance to the Mechanism of Catalysis and Cyanide Inhibition. Biochemistry, 1994, 33, 8702-8711.	1.2	61
111	Analysis of Oxidative Titrations of Desulfovibrio gigas Hydrogenase; Implications for the Catalytic Mechanism. Biochemistry, 1994, 33, 14339-14350.	1.2	57
112	Stability of the Ni-C State and Oxidative Titrations of Desulfovibrio gigas Hydrogenase Monitored by EPR and Electronic Absorption Spectroscopies. Journal of the American Chemical Society, 1994, 116, 3442-3448.	6.6	52
113	Identification of the CO oxidation site of CO dehydrogenase by EPR and ENDOR studies of the cyanide-inhibited state Journal of Inorganic Biochemistry, 1993, 51, 204.	1.5	4
114	Low spin quantitation of NiFeC EPR signal from carbon monoxide dehydrogenase is not due to damage incurred during protein purification. BBA - Proteins and Proteomics, 1993, 1161, 317-322.	2.1	32
115	Effects of sulfur site modification on the redox potentials of derivatives of [N,N'-bis(2-mercaptoethyl)-1,5-diazacyclooctanato]nickel(II). Journal of the American Chemical Society, 1993, 115, 4665-4674.	6.6	110
116	Identification of a cyanide binding site in CO dehydrogenase from Clostridium thermoaceticum using EPR and ENDOR spectroscopies. Journal of the American Chemical Society, 1993, 115, 12204-12205.	6.6	50
117	Heterogeneous nickel-iron environments in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Journal of the American Chemical Society, 1993, 115, 5522-5526.	6.6	61
118	Antiferromagnetic coupling in the binuclear metal cluster of manganese-substituted phosphotriesterase. Journal of the American Chemical Society, 1993, 115, 12173-12174.	6.6	42
119	Function and carbon monoxide binding properties of the nickel-iron complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry, 1992, 31, 12870-12875.	1.2	51
120	Discovery of a labile nickel ion required for CO/acetyl-CoA exchange activity in the NiFe complex of carbon monoxide dehydrogenase from Clostridium thermoaceticum. Journal of the American Chemical Society, 1992, 114, 9718-9719.	6.6	56
121	Redox titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry, 1992, 31, 6003-6011.	1.2	28
122	Reactivities and biological functions of iron-sulfur clusters. Journal of Cluster Science, 1990, 1, 29-73.	1.7	30
123	EXAFS studies of the nitrogenase iron protein from Azotobactor vinelandii. Inorganic Chemistry, 1987, 26, 3912-3916.	1.9	32
124	Nickel and iron EXAFS of F420-reducing hydrogenase from Methanobacterium thermoautotrophicum. Journal of the American Chemical Society, 1984, 106, 3062-3064.	6.6	98
125	Iron EXAFS of the iron-molybdenum cofactor of nitrogenase. Journal of the American Chemical Society, 1982, 104, 4703-4705.	6.6	58