List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/158465/publications.pdf Version: 2024-02-01

LINC-HUA TENC

#	Article	IF	CITATIONS
1	Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics, 2016, 10, 60-65.	15.6	918
2	Visibleâ€Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices. Advanced Materials, 2016, 28, 2533-2539.	11.1	387
3	Atomic layer deposition of a MoS ₂ film. Nanoscale, 2014, 6, 10584-10588.	2.8	335
4	Optical coupling of surface plasmons between graphene sheets. Applied Physics Letters, 2012, 100, .	1.5	291
5	Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Science Advances, 2016, 2, e1501168.	4.7	278
6	Tunable and reconfigurable metasurfaces and metadevices. Opto-Electronic Advances, 2018, 1, 18000901-18000925.	6.4	272
7	Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light: Science and Applications, 2014, 3, e185-e185.	7.7	257
8	From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chemical Society Reviews, 2021, 50, 5898-5951.	18.7	232
9	Switchable Magnetic Metamaterials Using Micromachining Processes. Advanced Materials, 2011, 23, 1792-1796.	11.1	228
10	Strong Coupling of Surface Plasmon Polaritons in Monolayer Graphene Sheet Arrays. Physical Review Letters, 2012, 109, 073901.	2.9	217
11	Silicon multiâ€metaâ€holograms for the broadband visible light. Laser and Photonics Reviews, 2016, 10, 500-509.	4.4	181
12	Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer. ACS Nano, 2010, 4, 3139-3146.	7.3	174
13	A Micromachined Reconfigurable Metamaterial via Reconfiguration of Asymmetric Splitâ€Ring Resonators. Advanced Functional Materials, 2011, 21, 3589-3594.	7.8	170
14	Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale, 2013, 5, 6243.	2.8	168
15	Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nature Communications, 2015, 6, 7059.	5.8	154
16	Optimization-free superoscillatory lens using phase and amplitude masks. Laser and Photonics Reviews, 2014, 8, 152-157.	4.4	149
17	A Supercritical Lens Optical Labelâ€Free Microscopy: Subâ€Diffraction Resolution and Ultraâ€Long Working Distance. Advanced Materials, 2017, 29, 1602721.	11.1	141
18	Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation. ACS Nano, 2016, 10, 1442-1453.	7.3	140

#	Article	IF	CITATIONS
19	High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nature Nanotechnology, 2020, 15, 675-682.	15.6	129
20	Ultrathin multi-band planar metamaterial absorber based on standing wave resonances. Optics Express, 2012, 20, 27756.	1.7	124
21	Lightâ€Driven Plasmonic Color Filters by Overlaying Photoresponsive Liquid Crystals on Gold Annular Aperture Arrays. Advanced Materials, 2012, 24, OP131-5.	11.1	117
22	Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications. Advanced Materials, 2018, 30, e1704556.	11.1	105
23	Printable two-dimensional superconducting monolayers. Nature Materials, 2021, 20, 181-187.	13.3	102
24	Annular aperture array based color filter. Applied Physics Letters, 2011, 99, .	1.5	99
25	All-Optical Chirality-Sensitive Sorting <i>via</i> Reversible Lateral Forces in Interference Fields. ACS Nano, 2017, 11, 4292-4300.	7.3	99
26	Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. Light: Science and Applications, 2018, 7, 17156-17156.	7.7	97
27	Lasing in GaN microdisks pivoted on Si. Applied Physics Letters, 2006, 89, 211101.	1.5	84
28	Dielectric multi-momentum meta-transformer in the visible. Nature Communications, 2019, 10, 4789.	5.8	82
29	On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale, 2016, 8, 2227-2233.	2.8	76
30	Insitu gold-loaded titania photonic crystals with enhanced photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 545-553.	5.2	73
31	Fabrication of TiO ₂ Binary Inverse Opals without Overlayers via the Sandwich-Vacuum Infiltration of Precursor. Langmuir, 2011, 27, 5157-5164.	1.6	72
32	High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens. Nano Letters, 2012, 12, 1549-1554.	4.5	72
33	Direct Optical Tuning of the Terahertz Plasmonic Response of InSb Subwavelength Gratings. Advanced Optical Materials, 2013, 1, 128-132.	3.6	71
34	Fabrication of Large Domain Crack-Free Colloidal Crystal Heterostructures with Superposition Bandgaps Using Hydrophobic Polystyrene Spheres. ACS Applied Materials & Interfaces, 2012, 4, 5562-5569.	4.0	68
35	Manipulating DC Currents with Bilayer Bulk Natural Materials. Advanced Materials, 2014, 26, 3478-3483.	11.1	68
36	Flat Helical Nanosieves. Advanced Functional Materials, 2016, 26, 5255-5262.	7.8	64

#	Article	lF	CITATIONS
37	Ultraviolet Metasurfaces of â‰^80% Efficiency with Antiferromagnetic Resonances for Optical Vectorial Antiâ€Counterfeiting. Laser and Photonics Reviews, 2019, 13, 1800289.	4.4	63
38	Giant Emission Enhancement of Solid‣tate Gold Nanoclusters by Surface Engineering. Angewandte Chemie - International Edition, 2020, 59, 8270-8276.	7.2	63
39	Polarization dependent state to polarization independent state change in THz metamaterials. Applied Physics Letters, 2011, 99, 221102.	1.5	60
40	Broadband Terahertz Plasmonic Response of Touching InSb Disks. Advanced Materials, 2012, 24, OP226-30.	11.1	59
41	Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method. Laser Physics Letters, 2013, 10, 065004.	0.6	53
42	A Novel Chiral Metasurface with Controllable Circular Dichroism Induced by Coupling Localized and Propagating Modes. Advanced Optical Materials, 2016, 4, 883-888.	3.6	53
43	Ultrasmooth Silver Thin Film on PEDOT:PSS Nucleation Layer for Extended Surface Plasmon Propagation. ACS Applied Materials & Interfaces, 2012, 4, 1247-1253.	4.0	51
44	Laser Hybrid Micro/nano-structuring of Si Surfaces in Air and its Applications for SERS Detection. Scientific Reports, 2014, 4, 6657.	1.6	51
45	Twisted Focusing of Optical Vortices with Broadband Flat Spiral Zone Plates. Advanced Optical Materials, 2014, 2, 1193-1198.	3.6	50
46	On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities. Optics Letters, 2016, 41, 1197.	1.7	50
47	Mimicking Dominoâ€Like Photonic Nanostructures on Butterfly Wings. Small, 2009, 5, 574-578.	5.2	48
48	In Situ "Doping―Inverse Silica Opals with Size-Controllable Gold Nanoparticles for Refractive Index Sensing. Journal of Physical Chemistry C, 2013, 117, 9440-9445.	1.5	48
49	Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	47
50	An Ultracompact Directional Coupler Based on GaAs Cross-Slot Waveguide. IEEE Photonics Technology Letters, 2010, 22, 1324-1326.	1.3	46
51	Micromachined switchable metamaterial with dual resonance. Applied Physics Letters, 2012, 101, 151902.	1.5	46
52	Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission. Physical Review B, 2013, 88, .	1.1	46
53	Three-dimensional supercritical resolved light-induced magnetic holography. Science Advances, 2017, 3, e1701398.	4.7	46
54	Analysis of entropy generation distribution in micro-combustors with baffles. International Journal of Hydrogen Energy, 2014, 39, 8118-8125.	3.8	44

#	Article	IF	CITATIONS
55	Photonâ€nanosieve for ultrabroadband and largeâ€angleâ€ofâ€view holograms. Laser and Photonics Reviews, 2017, 11, 1700025.	4.4	43
56	Optically tunable plasmonic color filters. Applied Physics A: Materials Science and Processing, 2012, 107, 49-54.	1.1	42
57	Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension. ACS Photonics, 2016, 3, 1986-1992.	3.2	42
58	Cool white III-nitride light emitting diodes based on phosphor-free indium-rich InGaN nanostructures. Applied Physics Letters, 2008, 92, 261909.	1.5	41
59	Effect of Surface Morphology on the Optical Properties in Metalâ^'Dielectricâ^'Metal Thin Film Systems. ACS Applied Materials & Interfaces, 2011, 3, 1148-1153.	4.0	41
60	Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light. Optics Letters, 2014, 39, 630.	1.7	41
61	Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting. Applied Physics Letters, 2009, 95, 261110.	1.5	40
62	Induced Optical Chirality and Circularly Polarized Emission from Achiral CdSe/ZnS Quantum Dots via Resonantly Coupling with Plasmonic Chiral Metasurfaces. Laser and Photonics Reviews, 2019, 13, 1800276.	4.4	40
63	Highly ordered and gap controllable two-dimensional non-close-packed colloidal crystals and plasmonic–photonic crystals with enhanced optical transmission. Journal of Materials Chemistry, 2012, 22, 24668.	6.7	39
64	Suspended slab and photonic crystal waveguides in lithium niobate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 316-320.	0.6	37
65	High sensitivity molecule detection by plasmonic nanoantennas with selective binding at electromagnetic hotspots. Nanoscale, 2014, 6, 1416-1422.	2.8	36
66	Direct and accurate patterning of plasmonic nanostructures with ultrasmall gaps. Nanoscale, 2013, 5, 4309.	2.8	35
67	High aspect ratio SiNW arrays with Ag nanoparticles decoration for strong SERS detection. Nanotechnology, 2014, 25, 465707.	1.3	35
68	Effects of H 2 /CO blend ratio on radiated power of micro combustor/emitter. Applied Thermal Engineering, 2015, 86, 178-186.	3.0	35
69	An improved convective self-assembly method for the fabrication of binary colloidal crystals and inverse structures. Journal of Colloid and Interface Science, 2012, 380, 42-50.	5.0	34
70	Orbital angular momentum generation via a spiral phase microsphere. Optics Letters, 2018, 43, 34.	1.7	34
71	Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals. Journal of Materials Chemistry, 2012, 22, 7609.	6.7	32
72	High Contrast Superlens Lithography Engineered by Loss Reduction. Advanced Functional Materials, 2012, 22, 3777-3783.	7.8	32

#	Article	IF	CITATIONS
73	The development of a wideband and angle-insensitive metamaterial filter with extraordinary infrared transmission for micro-thermophotovoltaics. Journal of Materials Chemistry C, 2015, 3, 3552-3558.	2.7	32
74	Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances. Opto-Electronic Advances, 2021, 4, 200088-200088.	6.4	32
75	Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications. Optical Materials Express, 2011, 1, 1548.	1.6	31
76	Solvent effect on the self-assembly of colloidal microspheres via a horizontal deposition method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 402, 37-44.	2.3	31
77	Fabrication of Well-Ordered Binary Colloidal Crystals with Extended Size Ratios for Broadband Reflectance. ACS Applied Materials & Interfaces, 2014, 6, 10265-10273.	4.0	31
78	Controlled group V intermixing in InGaAsP quantum well structures and its application to the fabrication of two section tunable lasers. Journal of Applied Physics, 2002, 92, 4330-4335.	1.1	30
79	Optical Transmission Enhancement and Tuning by Overylaying Liquid Crystals on a Gold Film with Patterned Nanoholes. Plasmonics, 2011, 6, 659-664.	1.8	30
80	Electrically and Thermally Tunable Smooth Silicon Metasurfaces for Broadband Terahertz Antireflection. Advanced Optical Materials, 2018, 6, 1800928.	3.6	30
81	Design of an ultrasensitive SPR biosensor based on a graphene-MoS ₂ hybrid structure with a MgF ₂ prism. Applied Optics, 2018, 57, 3639.	0.9	30
82	Subwavelength-Sized Plasmonic Structures for Wide-Field Optical Microscopic Imaging with Super-Resolution. Plasmonics, 2012, 7, 427-433.	1.8	29
83	Electrically and Optically Tunable Responses in Graphene/Transition-Metal-Dichalcogenide Heterostructures. ACS Applied Materials & Interfaces, 2018, 10, 44102-44108.	4.0	29
84	Magnetic-electric interference in metal-dielectric-metal oligomers: generation of magneto-electric Fano resonance. Optical Materials Express, 2012, 2, 1407.	1.6	28
85	Interlayer Excitons in Transition Metal Dichalcogenide Semiconductors for 2D Optoelectronics. Advanced Materials, 2022, 34, e2107138.	11.1	28
86	Optimization of hydrothermal growth ZnO Nanorods for enhancement of light extraction from GaN blue LEDs. Journal of Crystal Growth, 2010, 312, 1848-1854.	0.7	26
87	Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides. Optics Communications, 2016, 370, 226-230.	1.0	26
88	Tunable broadband transmission and phase modulation of light through graphene multilayers. Journal of Applied Physics, 2014, 115, .	1.1	24
89	Surface plasmon-coupled emission on metallic film coated with dye-doped polymer nanogratings. Applied Physics Letters, 2010, 97, 231117.	1.5	22
90	Self-Assembly of Crack-Free Silica Colloidal Crystals on Patterned Silicon Substrates. Journal of Physical Chemistry C, 2011, 115, 9970-9976.	1.5	22

#	Article	IF	CITATIONS
91	Reconfigurable phase-change photomask for grayscale photolithography. Applied Physics Letters, 2017, 110, .	1.5	22
92	Enhancing circular dichroism by super chiral hot spots from a chiral metasurface with apexes. Applied Physics Letters, 2017, 110, .	1.5	22
93	Nanoepitaxy to improve the efficiency of InGaN light-emitting diodes. Applied Physics Letters, 2008, 92, .	1.5	21
94	A sub-terahertz broadband detector based on a GaN high-electron-mobility transistor with nanoantennas. Applied Physics Express, 2017, 10, 014101.	1.1	21
95	Resonance Switchable Metamaterials Using MEMS Fabrications. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4700306-4700306.	1.9	20
96	Polarization independent broadband terahertz antireflection by deepâ€subwavelength thin metallic mesh. Laser and Photonics Reviews, 2014, 8, 941-945.	4.4	20
97	Evanescent vortex: Optical subwavelength spanner. Applied Physics Letters, 2016, 109, .	1.5	20
98	Three-dimensional visible-light capsule enclosing perfect supersized darkness via antiresolution. Laser and Photonics Reviews, 2014, 8, 743-749.	4.4	19
99	Exciton-Enabled Meta-Optics in Two-Dimensional Transition Metal Dichalcogenides. Nano Letters, 2020, 20, 7964-7972.	4.5	19
100	A New Method for Lift-off of III-Nitride Semiconductors for Heterogeneous Integration. Nanoscale Research Letters, 2010, 5, 1051-1056.	3.1	18
101	Active near infrared linear polarizer based on VO2 phase transition. Journal of Applied Physics, 2013, 114, 163103.	1.1	18
102	Influence of Plasmonic Effect on the Upconversion Emission Characteristics of NaYF ₄ Hexagonal Microrods. Inorganic Chemistry, 2018, 57, 8200-8204.	1.9	18
103	Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing. IEEE Photonics Technology Letters, 2000, 12, 1310-1312.	1.3	17
104	Colloidal Woodpile Structure:Â Three-Dimensional Photonic Crystal with a Dual Periodicity. Langmuir, 2006, 22, 7001-7006.	1.6	17
105	A 1×2 optical switch using one multimode interference region. Optics Communications, 2008, 281, 4616-4618.	1.0	17
106	Broadband spinâ€controlled focusing via logarithmicâ€spiral nanoslits of varying width. Laser and Photonics Reviews, 2015, 9, 674-681.	4.4	17
107	Optical and microstructural properties versus indium content in InxGa1â^xN films grown by metal organic chemical vapor deposition. Applied Physics Letters, 2010, 96, .	1.5	16
108	Subwavelength lithography by waveguide mode interference. Applied Physics Letters, 2011, 99, 151106.	1.5	16

#	Article	IF	CITATIONS
109	Highly efficient plasmon excitation in graphene-Bi_2Te_3 heterostructure. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1842.	0.9	16
110	Wavelength-tunable focusing via a Fresnel zone microsphere. Optics Letters, 2020, 45, 852.	1.7	16
111	Short-range surface plasmon propagation supported by stimulated amplification using electrical injection. Optics Express, 2011, 19, 22107.	1.7	15
112	Plasmonic metal nanostructure array by glancing angle deposition for biosensing application. Sensors and Actuators B: Chemical, 2013, 183, 310-318.	4.0	15
113	Perfect Broadband Terahertz Antireflection by Deepâ€Subwavelength, Thin, Lamellar Metallic Gratings. Advanced Optical Materials, 2013, 1, 910-914.	3.6	15
114	GENERATION OF OPTICAL VORTEX BEAMS BY COMPACT STRUCTURES. Journal of Molecular and Engineering Materials, 2014, 02, 1440013.	0.9	15
115	Fractal Holey Metal Microlenses with Significantly Suppressed Side Lobes and Highâ€Order Diffractions in Focusing. Advanced Optical Materials, 2014, 2, 487-492.	3.6	15
116	Effects of lift-off and strain relaxation on optical properties of InGaN/GaN blue LED grown on 150mm diameter Si (111) substrate. Journal of Crystal Growth, 2014, 402, 155-160.	0.7	15
117	Ultrahigh photoconductivity of bandgap-graded CdSxSe1â^'x nanowires probed by terahertz spectroscopy. Scientific Reports, 2016, 6, 27387.	1.6	15
118	Reconfigurable optical manipulation by phase change material waveguides. Nanoscale, 2017, 9, 6895-6900.	2.8	15
119	Giant Emission Enhancement of Solidâ€State Gold Nanoclusters by Surface Engineering. Angewandte Chemie, 2020, 132, 8347-8353.	1.6	15
120	Nanoimprinted ultrafine line and space nanogratings for liquid crystal alignment. Nanotechnology, 2012, 23, 465302.	1.3	14
121	PLASMONIC NANOLITHOGRAPHY: TOWARDS NEXT GENERATION NANOPATTERNING. Journal of Molecular and Engineering Materials, 2013, 01, 1250005.	0.9	14
122	Nanoscale smoothing of plasmonic films and structures using gas cluster ion beam irradiation. Applied Physics A: Materials Science and Processing, 2014, 117, 719-723.	1.1	14
123	Simultaneous enhancement of electron overflow reduction and hole injection promotion by tailoring the last quantum barrier in InGaN/GaN light-emitting diodes. Applied Physics Letters, 2014, 104, .	1.5	14
124	Fast Electrical Modulation in a Plasmonicâ€Enhanced, Vâ€Pitâ€Textured, Lightâ€Emitting Diode. Advanced Optical Materials, 2015, 3, 1703-1709.	3.6	14
125	Textured V-Pit Green Light Emitting Diode as a Wavelength-Selective Photodetector for Fast Phosphor-Based White Light Modulation. ACS Photonics, 2017, 4, 443-448.	3.2	14
126	Few-layer 1T′ MoTe ₂ as gapless semimetal with thickness dependent carrier transport. 2D Materials, 2018, 5, 031010.	2.0	14

#	Article	IF	CITATIONS
127	Sandwich-structured Fe ₂ O ₃ @SiO ₂ @Au nanoparticles with magnetoplasmonic responses. Journal of Materials Chemistry C, 2015, 3, 11645-11652.	2.7	13
128	650-nm AlGaInP multiple-quantum-well lasers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine. Applied Physics Letters, 2003, 83, 596-598.	1.5	12
129	Continuous-wave operation of AlGaInP/GaInP quantum-well lasers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine. Journal of Applied Physics, 2004, 95, 5252-5254.	1.1	12
130	Optical properties and bonding behaviors of InSbN alloys grown by metal-organic chemical vapor deposition. Journal of Crystal Growth, 2015, 416, 12-16.	0.7	12
131	Metal-assisted photonic mode for ultrasmall bending with long propagation length at visible wavelengths. Optics Express, 2012, 20, 23898.	1.7	11
132	Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate. Applied Physics Letters, 2013, 102, .	1.5	11
133	Fluid-enabled significant enhancement and active tuning of magnetic resonances in free-standing plasmonic metamaterials. Nanoscale, 2014, 6, 11106-11111.	2.8	11
134	Electrostatically Tunable Nearâ€Infrared Plasmonic Resonances in Solutionâ€Processed Atomically Thin NbSe ₂ . Advanced Materials, 2021, 33, e2101950.	11.1	11
135	Single-material-based multilayered nanostructures fabrication via reverse thermal nanoimprinting. Microelectronic Engineering, 2011, 88, 2946-2950.	1.1	10
136	Electrically switchable two-dimensional photonic crystals made ofÂpolymer-dispersed liquid crystals based onAtheÂTalbotÂself-imaging effect. Applied Physics B: Lasers and Optics, 2011, 104, 659-663.	1.1	10
137	Inelastic scattering of surface plasmons in oscillating metallic waveguides. Applied Physics Letters, 2011, 98, 263111.	1.5	10
138	Effect of rapid thermal annealing on behavior of nitrogen in GaAsN alloys. Journal of Crystal Growth, 2013, 362, 197-201.	0.7	10
139	Control of the band-gap shift in quantum-well intermixing using a germanium interlayer. Applied Physics Letters, 2000, 76, 1582-1584.	1.5	9
140	Distributed Bragg reflector laser using buried SiO2 grating and self-aligned band gap tuning. Applied Physics Letters, 2007, 90, 171107.	1.5	9
141	Distortion of the intense terahertz signal measured by spectral-encoding technique. Applied Physics Letters, 2009, 94, .	1.5	9
142	Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties. Optical Materials Express, 2012, 2, 55.	1.6	9
143	Enhancement of responsivity for a transistor terahertz detector by a Fabry-Pérot resonance-cavity. Applied Physics Letters, 2017, 110,	1.5	9
144	Multi-wavelength lasers fabricated by an Al layer controlled quantum well intermixing technology. Journal of Applied Physics, 2000, 88, 3458-3462.	1.1	8

#	Article	IF	CITATIONS
145	Sub-30 nm thick plasmonic films and structures with ultralow loss. Nanoscale, 2014, 6, 3243-3249.	2.8	8
146	Branchlike nano-electrodes for enhanced terahertz emission in photomixers. Nanotechnology, 2015, 26, 255201.	1.3	8
147	Ultrathin Film Broadband Terahertz Antireflection Coating Based on Impedance Matching Method. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-8.	1.9	8
148	Supercritical focusing coherent anti-Stokes Raman scattering microscopy for high-resolution vibrational imaging. Optics Letters, 2018, 43, 5615.	1.7	8
149	Surface plasmon enhanced photoluminescence in gold capped InGaAs quantum well nanodisk array. Optical Materials Express, 2013, 3, 2003.	1.6	7
150	ENGINEERING PLASMONIC COLORS IN METAL NANOSTRUCTURES. Journal of Molecular and Engineering Materials, 2014, 02, 1440011.	0.9	7
151	Modelling of GaN HEMTs as Terahertz Detectors Based on Self-Mixing. Procedia Engineering, 2016, 141, 98-102.	1.2	7
152	Tunable plasmonic filter based on graphene-layered waveguide. Modern Physics Letters B, 2018, 32, 1850110.	1.0	7
153	Design of narrowband perfect absorber for enhancing photoluminescence in atomically thin WSe2. Optics Communications, 2020, 454, 124443.	1.0	7
154	Fano-like chiroptical response in plasmonic heterodimer nanostructures. Physical Chemistry Chemical Physics, 2020, 22, 3604-3610.	1.3	7
155	Controllable Polarizationâ€Insensitive and Largeâ€Angle Beam Switching with Phase hange Metasurfaces. Advanced Optical Materials, 2022, 10, .	3.6	7
156	Wideâ€Angle Tunable Critical Coupling in Nanophotonic Optical Coatings with Low‣oss Phase Change Material. Small, 2022, 18, .	5.2	7
157	Photonic band structure of nanoporous anodized aluminum oxide with radius-to-period ratio modulation. Computational Materials Science, 2010, 49, S153-S156.	1.4	6
158	Enhanced photoelectrochemical performance of bridged ZnO nanorod arrays grown on V-grooved structure. Nanotechnology, 2012, 23, 365704.	1.3	6
159	Optical Magnetic Resonances in Subwavelength Ag–MgF2–Ag Grating Structures. Plasmonics, 2013, 8, 1221-1226.	1.8	6
160	Electrically tunable polarization-insensitive MIM plasmonic metasurface operating in transmission mode. Journal of Optics (United Kingdom), 2019, 21, 055102.	1.0	6
161	Ultralong light focusing via negative axicon microsphere. Engineering Research Express, 2020, 2, 015044.	0.8	6
162	Resonance-free ultraviolet metaoptics via photon nanosieves. Optics Letters, 2019, 44, 3418.	1.7	6

#	Article	IF	CITATIONS
163	Impurity-free intermixing in compressively strained InGaAsP multiple quantum well structures. Materials Science in Semiconductor Processing, 2001, 4, 621-624.	1.9	5
164	Distortion analysis of pulsed terahertz signal measured with spectral-encoding technique. Journal of Applied Physics, 2010, 108, 093112.	1.1	5
165	Bandgap engineering of 1.3μm quantum dot structures for terahertz (THz) emission. Journal of Crystal Growth, 2011, 323, 211-214.	0.7	5
166	New Approach for Multilayered Microstructures Fabrication Based on a Water-Soluble Backing Substrate. ACS Applied Materials & Interfaces, 2013, 5, 5898-5902.	4.0	5
167	Graphene-polymer multilayer heterostructure for terahertz metamaterials. , 2013, , .		5
168	Effect of dielectric cladding on active plasmonic device based on InGaAsP multiple quantum wells. Optics Express, 2014, 22, 25599.	1.7	5
169	Dual metamaterial structures generated from an one-step fabrication using stencil lithography. Applied Physics A: Materials Science and Processing, 2014, 116, 907-912.	1.1	5
170	A Single-Step Route to Single-Crystal Molybdenum Disulphide (MoS2) Monolayer domains. Scientific Reports, 2019, 9, 4142.	1.6	5
171	The Significance of Metal Coordination in Imidazoleâ€Functionalized Metal–Organic Frameworks for Carbon Dioxide Utilization. Chemistry - A European Journal, 2020, 26, 13606-13610.	1.7	5
172	Reply to: Detectivities of WS2/HfS2 heterojunctions. Nature Nanotechnology, 2022, 17, 220-221.	15.6	5
173	InGaAsP/GaInP/AlGaInP 0.8μm QW lasers grown by MOCVD using TBP and TBAs. Journal of Crystal Growth, 2005, 281, 323-327.	0.7	4
174	MOCVD growth of 980nm InGaAs/GaAs/AlGaAs graded index separate confinement heterostructure quantum well lasers with tertiarybutylarsine. Journal of Crystal Growth, 2006, 289, 59-62.	0.7	4
175	Frequency control of surface plasmons with oscillating metal-insulator-metal waveguides. Applied Physics A: Materials Science and Processing, 2012, 107, 43-48.	1.1	4
176	Effect of SiO2–metal–SiO2 plasmonic structures on InGaAs/GaAs quantum well intermixing. Applied Physics A: Materials Science and Processing, 2014, 117, 517-521.	1.1	4
177	Unidirectional generation of surface plasmon polaritons by a single right-angled trapezoid metallic nanoslit. Journal Physics D: Applied Physics, 2017, 50, 045101.	1.3	4
178	Hybrid Plasmonics and Two-Dimensional Materials: Theory and Applications. Journal of Molecular and Engineering Materials, 2020, 08, 2030001.	0.9	4
179	MOCVD growth of GaInNAs/GaAs multiple quantum wells with nitrogen composition fluctuation. Journal of Crystal Growth, 2002, 242, 15-19.	0.7	3
180	Simulation of 1.55μm distributed feedback semiconductor laser: investigation of dielectric grating yielding high coupling effect. Journal of Crystal Growth, 2004, 268, 437-443.	0.7	3

#	Article	IF	CITATIONS
181	One-dimensional aligned InAs/InP quantum dots chain growth by metalorganic vapor phase epitaxy for 1.551¼m application. Journal of Crystal Growth, 2007, 305, 45-49.	0.7	3
182	Temperature and injection current dependent electroluminescence study of GaInP/AlGaInP quantum well laser diode grown using tertiarybutylarsine and tertiarybutylphosphine. Applied Physics A: Materials Science and Processing, 2008, 91, 435-439.	1,1	3
183	Atomic ordering of AlInP grown by MOVPE using TBP with different V/III ratios in pure ambient N2. Journal of Crystal Growth, 2010, 312, 1505-1509.	0.7	3
184	Deterministic relief dielectric structures to realize phase modulation of surface-plasmon polaritons. Optics Letters, 2010, 35, 4196.	1.7	3
185	Distortion of terahertz signals due to imperfect synchronization with chirped probe pulses. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 2049.	0.8	3
186	Design and fabrication of subwavelength nanogratings based light-emitting diodes. Applied Physics A: Materials Science and Processing, 2011, 103, 827-830.	1.1	3
187	Radio frequency plasma pre-treatment for selective electroless Ag coating of three dimensional SU-8 microstructures. , 2012, , .		3
188	Distortion reduction in strong terahertz signals using broadband attenuators with flat transmittance. Journal Physics D: Applied Physics, 2016, 49, 015501.	1.3	3
189	Black-wax assisted lift-off and transfer of CVD grown graphene from copper foil substrates to various foreign substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	3
190	High quality AlGaInP epilayers grown by MOCVD using TBP for red lasers. Journal of Crystal Growth, 2003, 253, 161-166.	0.7	2
191	Semiconductor Laser Using Multimode Interference (MMI) Principle. , 2008, , .		2
192	Solution epitaxy of patterned ZnO nanorod arrays by interference lithography. Progress in Crystal Growth and Characterization of Materials, 2012, 58, 135-144.	1.8	2
193	Waveguiding effect in 2D metal–dielectric–metal grating structure. Applied Physics A: Materials Science and Processing, 2012, 107, 127-132.	1.1	2
194	Coupling of surface plasmon with InGaAs/GaAs quantum well emission by gold nanodisk arrays. Applied Optics, 2013, 52, 3698.	0.9	2
195	Simultaneous coupling of surface plasmon resonance and photonic bandgap to InGaAs quantum well emission. Journal of Applied Physics, 2016, 119, .	1.1	2
196	First-step nucleation growth dependence of InAs/InGaAs/InP quantum dot formation in two-step growth. Nanotechnology, 2008, 19, 085603.	1.3	1
197	To realize the optimal probe pulse length for detection of pulsed terahertz signal with spectral-encoding technique. Applied Physics Letters, 2011, 98, .	1.5	1
198	An atomic ordering based AlInP unicompositional quantum well grown by MOVPE. Journal of Crystal Growth, 2012, 356, 1-3.	0.7	1

#	Article	IF	CITATIONS
199	Two-section tunable laser using impurity free intermixing in InGaAsP multiple quantum well structures. , 2001, , .		0
200	Novel 2D ordered arrays of nanostructures fabricated through silica masks formed by bilayer colloidal crystals as templates. , 0, , .		0
201	Introduction to the Special Issue on Photonic Materials and Devices. Journal of Crystal Growth, 2006, 288, 1.	0.7	0
202	Analysis of distortions in electro-optic T-ray detection with a chirped optical probe pulse. , 2009, , .		0
203	The Near-Diffraction-Limited Operation of Positive Index-Guided Submicrometer-Ridge Laser Arrays. IEEE Journal of Quantum Electronics, 2009, 45, 903-913.	1.0	0
204	Built-in electric field influence on impurity-free vacancy disordering of InGaAs/InP quantum well structure. Science Bulletin, 2010, 55, 1363-1366.	1.7	0
205	A novel fiber-based Terahertz source. , 2010, , .		0
206	Gain-assisted propagation of surface plasmon polaritons using electrically pumped quantum wells as active medium. Proceedings of SPIE, 2011, , .	0.8	0
207	OPTICAL METAMATERIALS AND SUPER-RESOLUTION IMAGING. Cosmos, 2011, 07, 43-63.	0.4	0
208	Surface plasmon enhanced optical transmission through subwavelength apertures with carbon nanotubes. , 2012, , .		0
209	Plasmonic coupling in separated graphene sheets. , 2012, , .		0
210	Shaping the profile of photonic crystal nanorods. , 2012, , .		0
211	Fabrication of nanoarms and nanotips via focused ion beam milling. , 2012, , .		0
212	Plasmonic Effect Enhancement in Ridge–Trench Structure Assisted by Fluorescence Dye. Plasmonics, 2012, 7, 19-24.	1.8	0
213	Publisher's Note: Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission [Phys. Rev. B 88 , 205405 (2013)]. Physical Review B, 2014, 90, .	1.1	0
214	Ultra-thin low loss Si3N4 optical waveguides at 1310 nm. Proceedings of SPIE, 2014, , .	0.8	0
215	Enhancement of GaAs/InGaAs quantum well emission by disordered gold nanoparticle arrays. Applied Physics A: Materials Science and Processing, 2014, 115, 487-490.	1.1	0

#	Article	IF	CITATIONS
217	Sub-wavelength nano-electrode structures to improve the performance of terahertz photomixers. , 2016, , .		0
218	Broadband generation of rational-order optical vortices using a bilateral meta-grating. Journal of Optics (United Kingdom), 2021, 23, 024002.	1.0	0
219	Gain-assisted propagation of surface plasmon polaritons using electrically-pumped quantum wells as active medium. , 2011, , .		0
220	Optical Coupling in Layered Graphene Sheets. , 2012, , .		0
221	Metamaterials Empowered THz Components. , 2016, , .		0
222	Sieving Photons for Wavefront Manipulation. , 2018, , .		0
223	Silicon-nitride/oxynitride wavelength demultiplexer and resonators for quantum photonics. , 2018, , .		0