
Adam Holewinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1584566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ATR-SEIRAS Investigation of the Electro-oxidation Mechanism of Biomass-Derived C ₅ Furanics on Platinum Electrodes. Journal of Physical Chemistry C, 2022, 126, 7054-7065.	3.1	13
2	Electrochemical reduction selectivity of crotonaldehyde on copper. Journal of Applied Electrochemistry, 2021, 51, 5-17.	2.9	5
3	Highly stable dioxin-linked metallophthalocyanine covalent organic frameworks. Chinese Chemical Letters, 2021, 32, 3799-3802.	9.0	17
4	Predicting macro-kinetic observables in electrocatalysis using the generalized degree of rate control. Journal of Catalysis, 2021, 397, 233-244.	6.2	17
5	Decomposition of Trace Li ₂ CO ₃ During Charging Leads to Cathode Interface Degradation with the Solid Electrolyte LLZO. Advanced Functional Materials, 2021, 31, 2103716.	14.9	38
6	Selective Interactions between Free-Atom-like <i>d</i> -States in Single-Atom Alloy Catalysts and Near-Frontier Molecular Orbitals. Journal of the American Chemical Society, 2021, 143, 11897-11902.	13.7	43
7	Microkinetic modeling in electrocatalysis: Applications, limitations, and recommendations for reliable mechanistic insights. Journal of Catalysis, 2021, 404, 864-872.	6.2	16
8	Investigating the use of conducting oligomers and redox molecules in CdS–MoFeP biohybrids. Nanoscale Advances, 2021, 3, 1392-1396.	4.6	2
9	Tuning the selectivity of electrochemical levulinic acid reduction to 4-hydroxyvaleric acid: a monomer for biocompatible and biodegradable plastics. Green Chemistry, 2021, 23, 9154-9164.	9.0	10
10	Accelerating Electro-oxidation Turnover Rates via Potential-Modulated Stimulation of Electrocatalytic Activity. Industrial & Engineering Chemistry Research, 2020, 59, 19999-20010.	3.7	8
11	Electro-oxidation of furfural on gold is limited by furoate self-assembly. Journal of Catalysis, 2020, 391, 327-335.	6.2	30
12	Cathode Interface Compatibility of Amorphous LiMn ₂ O ₄ (LMO) and Li ₇ La ₃ Zr ₂ O ₁₂ (LLZO) Characterized with Thin-Film Solid-State Electrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 24992-24999.	8.0	26
13	Understanding the interplay of bifunctional and electronic effects: Microkinetic modeling of the CO electro-oxidation reaction. Journal of Catalysis, 2020, 384, 1-13.	6.2	27
14	Insight into the Oxidation Mechanism of Furanic Compounds on Pt(111). ACS Catalysis, 2019, 9, 11360-11370.	11.2	10
15	Elucidating Acidic Electro-Oxidation Pathways of Furfural on Platinum. ACS Catalysis, 2019, 9, 10305-10316.	11.2	85
16	Density functional theory study of furfural electrochemical oxidation on the Pt (1â€ ⁻ 1â€ ⁻ 1) surface. Journal of Catalysis, 2019, 373, 322-335.	6.2	37
17	Prospects of Platinum-Based Nanostructures for the Electrocatalytic Reduction of Oxygen. ACS Catalysis, 2018, 8, 9388-9398.	11.2	52
18	Aminopolymer Mobility and Support Interactions in Silica-PEI Composites for CO ₂ Capture Applications: A Quasielastic Neutron Scattering Study. Journal of Physical Chemistry B, 2017, 121, 6721-6731.	2.6	30

Adam Holewinski

#	Article	IF	CITATIONS
19	Identifying "Optimal―Electrocatalysts: Impact of Operating Potential and Charge Transfer Model. ACS Catalysis, 2017, 7, 8641-8652.	11.2	21
20	Unraveling the Dynamics of Aminopolymer/Silica Composites. Langmuir, 2016, 32, 2617-2625.	3.5	17
21	Probing the Role of Zr Addition versus Textural Properties in Enhancement of CO ₂ Adsorption Performance in Silica/PEI Composite Sorbents. Langmuir, 2015, 31, 9356-9365.	3.5	26
22	Linking CO ₂ Sorption Performance to Polymer Morphology in Aminopolymer/Silica Composites through Neutron Scattering. Journal of the American Chemical Society, 2015, 137, 11749-11759.	13.7	131
23	High-performance Ag–Co alloy catalysts for electrochemical oxygen reduction. Nature Chemistry, 2014, 6, 828-834.	13.6	383
24	Identifying optimal active sites for heterogeneous catalysis by metal alloys based on molecular descriptors and electronic structure engineering. Current Opinion in Chemical Engineering, 2013, 2, 312-319.	7.8	54
25	Predictive Structure–Reactivity Models for Rapid Screening of Pt-Based Multimetallic Electrocatalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 12-16.	11.2	127
26	Elementary Mechanisms in Electrocatalysis: Revisiting the ORR Tafel Slope. Journal of the Electrochemical Society, 2012, 159, H864-H870.	2.9	300
27	Electronic Structure Engineering in Heterogeneous Catalysis: Identifying Novel Alloy Catalysts Based on Rapid Screening for Materials with Desired Electronic Properties. Topics in Catalysis, 2012, 55, 376-390.	2.8	80
28	Controlling Carbon Surface Chemistry by Alloying:Â Carbon Tolerant Reforming Catalyst. Journal of the American Chemical Society, 2006, 128, 11354-11355.	13.7	172
29	Electrochemical Routes for the Valorization of Biomass-Derived Feedstocks: From Chemistry to Application. ACS Energy Letters, 0, , 1205-1270.	17.4	130