
Zhenxia Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1584489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer. Journal of the American Chemical Society, 2012, 134, 3979-3982.	6.6	1,033
2	A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organicâ ^'Organic Self-Assembly. Chemistry of Materials, 2006, 18, 4447-4464.	3.2	1,005
3	Triconstituent Co-assembly to Ordered Mesostructured Polymerâ^Silica and Carbonâ^Silica Nanocomposites and Large-Pore Mesoporous Carbons with High Surface Areas. Journal of the American Chemical Society, 2006, 128, 11652-11662.	6.6	579
4	Single-Molecular Artificial Transmembrane Water Channels. Journal of the American Chemical Society, 2012, 134, 8384-8387.	6.6	367
5	Design and Generation of Extended Zeolitic Metal–Organic Frameworks (ZMOFs): Synthesis and Crystal Structures of Zinc(II) Imidazolate Polymers with Zeolitic Topologies. Chemistry - A European Journal, 2007, 13, 4146-4154.	1.7	351
6	Selective Artificial Transmembrane Channels for Protons by Formation of Water Wires. Angewandte Chemie - International Edition, 2011, 50, 12564-12568.	7.2	342
7	A Metal–Organic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 3178-3181.	7.2	340
8	Highly effective binding of neutral dinitriles by simple pillar[5]arenes. Chemical Communications, 2012, 48, 2967.	2.2	301
9	An Aqueous Cooperative Assembly Route To Synthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology. Chemistry of Materials, 2006, 18, 5279-5288.	3.2	238
10	QMOF-1 and QMOF-2: Three-Dimensional Metal–Organic Open Frameworks with a Quartzlike Topology. Angewandte Chemie - International Edition, 2002, 41, 4471-4473.	7.2	223
11	Pillar[n]arenes (n = 8–10) with two cavities: synthesis, structures and complexing properties. Chemical Communications, 2012, 48, 10999.	2.2	193
12	A Large 24-Membered-Ring Germanate Zeolite-Type Open-Framework Structure with Three-Dimensional Intersecting Channels. Angewandte Chemie - International Edition, 2001, 40, 2166-2168.	7.2	152
13	Synthesis of Pillar[5]arene Dimers and Their Cooperative Binding toward Some Neutral Guests. Organic Letters, 2012, 14, 42-45.	2.4	152
14	Cadmium Imidazolate Frameworks with Polymorphism, High Thermal Stability, and a Large Surface Area. Chemistry - A European Journal, 2010, 16, 1137-1141.	1.7	148
15	Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures. Journal of Materials Chemistry, 2006, 16, 1511.	6.7	130
16	Three-Dimensional Pillar-Layered Copper(II) Metalâ^'Organic Framework with Immobilized Functional OH Groups on Pore Surfaces for Highly Selective CO ₂ /CH ₄ and C ₂ H ₂ /CH ₄ Gas Sorption at Room Temperature. Inorganic Chemistry, 2011, 50, 3442-3446.	1.9	115
17	Two Polymorphs of Cobalt(II) Imidazolate Polymers Synthesized Solvothermally by Using One Organic TemplateN,N-Dimethylacetamide. Inorganic Chemistry, 2004, 43, 4631-4635.	1.9	112
18	Self-assembly and proton conductance of organic nanotubes from pillar[5]arenes. Tetrahedron Letters, 2011, 52, 2484-2487	0.7	104

#	Article	IF	CITATIONS
19	Pore Structures of Ordered Large Cage-Type Mesoporous Silica FDU-12s. Journal of Physical Chemistry B, 2006, 110, 21467-21472.	1.2	100
20	Selective and Effective Binding of Pillar[5,6]arenes toward Secondary Ammonium Salts with a Weakly Coordinating Counteranion. Organic Letters, 2012, 14, 4126-4129.	2.4	100
21	A Microporous Metal <i>–</i> Organic Framework with Immobilized –OH Functional Groups within the Pore Surfaces for Selective Gas Sorption. European Journal of Inorganic Chemistry, 2010, 2010, 3745-3749.	1.0	97
22	Heterolytic Cleavage of Dihydrogen by "Frustrated Lewis Pairs―Comprising Bis(2,4,6â€ŧris(trifluoromethyl)phenyl)borane and Amines: Stepwise versus Concerted Mechanism. Angewandte Chemie - International Edition, 2011, 50, 12227-12231.	7.2	97
23	Reversible Two-Dimensionalâ^'Three Dimensional Framework Transformation within a Prototype Metalâ^'Organic Framework. Crystal Growth and Design, 2009, 9, 5293-5296.	1.4	96
24	A Porous Metal–Organic Framework Constructed from Carboxylate–Pyrazolate Shared Heptanuclear Zinc Clusters: Synthesis, Gas Adsorption, and Guest-Dependent Luminescent Properties. Inorganic Chemistry, 2013, 52, 10368-10374.	1.9	82
25	The marriage of endo-cavity and exo-wall complexation provides a facile strategy for supramolecular polymerization. Chemical Communications, 2015, 51, 3434-3437.	2.2	82
26	Silicaâ€Templated Synthesis of Ordered Mesoporous Tungsten Carbide/Graphitic Carbon Composites with Nanocrystalline Walls and High Surface Areas via a Temperatureâ€Programmed Carburization Route. Small, 2009, 5, 2738-2749.	5.2	76
27	Construction of 3D Layer-Pillared Homoligand Coordination Polymers from a 2D Layered Precursor. Inorganic Chemistry, 2006, 45, 8677-8684.	1.9	69
28	Unprecedented highly efficient capture of glycopeptides by Fe ₃ O ₄ @Mg-MOF-74 core–shell nanoparticles. Chemical Communications, 2017, 53, 4018-4021.	2.2	69
29	Two novel lanthanide 1-D chain coordination polymers of pyridinedicarboxylic acids: hydrothermal synthesis, structure and luminescent properties. Journal of Molecular Structure, 2005, 750, 101-108.	1.8	68
30	Hydrogen-bonding 2D metal–organic solids as highly robust and efficient heterogeneous green catalysts for Biginelli reaction. Tetrahedron Letters, 2011, 52, 6220-6222.	0.7	68
31	Mixed-Solvothermal Syntheses and Structures of Six New Zinc Phosphonocarboxylates with Zeolite-type and Pillar-Layered Frameworks. Crystal Growth and Design, 2008, 8, 4045-4053.	1.4	63
32	Crystal transformation synthesis of a highly stable phosphonate MOF for selective adsorption of CO ₂ . CrystEngComm, 2013, 15, 2040-2043.	1.3	63
33	A rutile-type porous zinc(ii)-phosphonocarboxylate framework: local proton transfer and size-selected catalysis. Chemical Communications, 2010, 46, 1100-1102.	2.2	61
34	Activation of Bis(guanidinate)lanthanide Alkyl and Aryl Complexes on Elemental Sulfur: Synthesis and Characterization of Bis(guanidinate)lanthanide Thiolates and Disulfides. Inorganic Chemistry, 2010, 49, 5715-5722.	1.9	60
35	Different crystal structure and photophysical properties of lanthanide complexes with 5-bromonicotinic acid. Journal of Solid State Chemistry, 2004, 177, 3805-3814.	1.4	58
36	Hydrothermal synthesis, crystal structure and luminescence of four novel metal–organic frameworks. Journal of Solid State Chemistry, 2006, 179, 4037-4046.	1.4	57

#	Article	IF	CITATIONS
37	Controllable One-Step Synthesis of Spirocycles, Polycycles, and Di- and Tetrahydronaphthalenes from Aryl-Substituted Propargylic Alcohols. Journal of Organic Chemistry, 2008, 73, 6845-6848.	1.7	57
38	Significantly Enhanced CO ₂ /CH ₄ Separation Selectivity within a 3D Prototype Metal–Organic Framework Functionalized with OH Groups on Pore Surfaces at Room Temperature. European Journal of Inorganic Chemistry, 2011, 2011, 2227-2231.	1.0	56
39	A zinc(ii) metal–organic framework based on triazole and dicarboxylate ligands for selective adsorption of hexane isomers. Chemical Communications, 2011, 47, 7197.	2.2	55
40	Enhancing CO ₂ adsorption of a Zn-phosphonocarboxylate framework by pore space partitions. Chemical Communications, 2013, 49, 78-80.	2.2	55
41	Multiple Nâ^'H Bond Activation:Â Synthesis and Reactivity of Functionalized Primary Amido Ytterbium Complexes. Organometallics, 2007, 26, 1934-1946.	1.1	53
42	Insertion of Isocyanate and Isothiocyanate into the Ln–P σ-Bond of Organolanthanide Phosphides. Organometallics, 2011, 30, 5809-5814.	1.1	50
43	Synthesis and Structure of a New 3D Porous Cu(II)–Benzene-1,3,5-tricarboxylate Coordination Polymer, [Cu2(OH)(BTC)(H2O)]n·2nH2O. Chemistry Letters, 2003, 32, 590-591.	0.7	49
44	Facile Transformations of Lanthanocene Alkyls to Lanthanocene Thiolate, Sulfide, and Disulfide Derivatives by Reaction with Elemental Sulfur. Organometallics, 2005, 24, 1982-1988.	1.1	49
45	A New Multidentate Hexacarboxylic Acid for the Construction of Porous Metalâ^'Organic Frameworks of Diverse Structures and Porosities. Crystal Growth and Design, 2010, 10, 2775-2779.	1.4	48
46	Synthesis, Structural Characterization, and Reactivity of Mono(amidinate) Rare-Earth-Metal Bis(aminobenzyl) Complexes. Organometallics, 2013, 32, 7312-7322.	1.1	46
47	Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Longâ€Lasting Selfâ€Cleaning Textiles. Angewandte Chemie - International Edition, 2022, 61, e202115956.	7.2	45
48	Synthesis, Structures, and Reactivity of Yttrium Alkyl and Alkynyl Complexes with Mixed Tp ^{Me2} /Cp Ligands. Inorganic Chemistry, 2011, 50, 11813-11824.	1.9	43
49	A novel quaternary dinuclear luminescent terbium complex Tb2(phth)2(Hphth)2(phen)2(H2O)4: hydrothermal synthesis, crystal structure and photophysics. Journal of Molecular Structure, 2004, 694, 115-120.	1.8	42
50	A Zeoliteâ€Like Zinc Phosphonocarboxylate Framework and Its Transformation into Two―and Threeâ€Dimensional Structures. Chemistry - an Asian Journal, 2007, 2, 1549-1554.	1.7	41
51	Frustrated Lewis Pair Induced Boroauration of Terminal Alkynes. Angewandte Chemie - International Edition, 2012, 51, 12047-12050.	7.2	41
52	A highly stable indium phosphonocarboxylate framework as a multifunctional sensor for Cu ²⁺ and methylviologen ions. Dalton Transactions, 2015, 44, 3794-3800.	1.6	40
53	Two Novel Zinc(II) Metal–Organic Frameworks Based on Triazole-Carboxylate Shared Paddle-Wheel Units: Synthesis, Structure, and Gas Adsorption. Crystal Growth and Design, 2011, 11, 2811-2816.	1.4	37
54	Synthesis, structure and luminescence of novel 1D chain coordination polymers [Ln(isophth)(Hisophth)(H2O)4·4H2O]n (Ln=Sm, Dy). Journal of Molecular Structure, 2005, 741, 141-147.	1.8	35

#	Article	IF	CITATIONS
55	Synthesis, Structural Characterization, and Reactivity of Lanthanide Complexes Containing a New Methylene-Bridged Indenylâ°'Pyrrolyl Dianionic Ligand. Organometallics, 2006, 25, 5165-5172.	1.1	35
56	Facile Construction of Lanthanide Metallomacrocycles with the Bridging Imidazolate and Triazolate Ligands and Their Ring Expansions. Inorganic Chemistry, 2007, 46, 321-327.	1.9	35
57	Synthesis and reactivity of organolanthanide complexes containing phenothiazine ligand toward carbodiimide and isothiocyanate. Journal of Organometallic Chemistry, 2005, 690, 4926-4932.	0.8	34
58	Reactivity of Lanthanocene Hydroxides toward Ketene, Isocyanate, Lanthanocene Alkyl, and Triscyclopentadienyllanthanide Complexes. Inorganic Chemistry, 2006, 45, 5867-5877.	1.9	34
59	1,2,4-Diazaphospholide Complexes of Samarium(III). Inorganic Chemistry, 2008, 47, 9739-9741.	1.9	34
60	Synthesis of Isoreticular Zinc(II)â€Phosphonocarboxylate Frameworks and Their Application in the Friedel–Crafts Benzylation Reaction. Chemistry - A European Journal, 2011, 17, 10323-10328.	1.7	34
61	Novel Iso-Reticular Zn(ii) Metal–Organic Frameworks constructed by Trinuclear-Triangular and Paddle-Wheel Units: Synthesis, Structure and Gas Adsorption. Dalton Transactions, 2012, 41, 4007.	1.6	34
62	TEA-assistant synthesis of MOF-74 nanorods for drug delivery and in-vitro magnetic resonance imaging. Microporous and Mesoporous Materials, 2021, 315, 110900.	2.2	33
63	Structural diversity of 1,2,4-diazaphospholide complexes with alkali metals. Chemical Communications, 2008, , 2266.	2.2	32
64	Supramolecular Isomerism of Metalâ^'Organic Frameworks Derived from a Bicarboxylate Linker with Two Distinct Binding Motifs. Crystal Growth and Design, 2009, 9, 1505-1510.	1.4	32
65	A novel green phosphorescent silver(i) coordination polymer with three-fold interpenetrated CdSO4-type net generated via in situ reaction. CrystEngComm, 2011, 13, 1504-1508.	1.3	31
66	Versatile Reactivity of Scorpionateâ€Anchored YttriumDialkyl Complexes towards Unsaturated Substrates. Chemistry - A European Journal, 2013, 19, 11975-11983.	1.7	31
67	Controlled syntheses of Mg-MOF-74 nanorods for drug delivery. Journal of Solid State Chemistry, 2021, 294, 121853.	1.4	31
68	Hydrothermal synthesis of new berylloborophosphates MIBeBPO (MI=K+, Na+ and NH4+) with zeolite ANA framework topology. Microporous and Mesoporous Materials, 2003, 57, 309-316.	2.2	30
69	[Cul(im)]â^ž: Is this Air-Stable Copper(I) Imidazolate (8210)-Net Polymer the Species Responsible for the Corrosion-Inhibiting Properties of Imidazole with Copper Metal?. European Journal of Inorganic Chemistry, 2004, 2004, 1813-1816.	1.0	30
70	Two-step synthesis, structure and adsorption property of a dynamic zinc phosphonocarboxylate framework. CrystEngComm, 2011, 13, 3378.	1.3	30
71	Synthesis of a new organically templated zeolite-like zirconogermanate (C4N2H12)[2rGe4O10F2] with cavansite topologyElectronic supplementary information (ESI) available: tables of crystal data, including atomic coordinates, selected bond lengths and angles, and thermal parameters, and also a SEM image of FDZG-1. See http://www.rsc.org/suppdata/jm/b2/b209801f/. Journal of Materials Chemistry,	6.7	29
72	2003, 13, 308-311. Synthesis and crystal structures of four pH-dependent Pb(II) and Cd(II) phosphonates based on a novel ligand, 3-phosphono-benzoic acid. Inorganica Chimica Acta, 2009, 362, 2101-2107.	1.2	29

#	Article	IF	CITATIONS
73	Insertion Reaction of Ketene into the Metalâ^'Sulfur Bond:Â Synthesis and Characterization of [Cp2Ln(μ-η1:η2-OC(SEt)CPh2)]2(Ln = Yb, Er, Sm, Y) and [Cp2Er(μ-η1:η2-OC(SEt)CPhEt)]2. Organometallics, 20 23, 3246-3251.	00.4,	28
74	Selective Reaction Based on the Linked Diamido Ligands of Dinuclear Lanthanide Complexes. Inorganic Chemistry, 2007, 46, 5252-5259.	1.9	28
75	An Yttrium Organic <i>cyclo</i> -P ₄ Complex and Its Selective Conversions. Inorganic Chemistry, 2019, 58, 8451-8459.	1.9	28
76	Reactivity of Organolanthanide Derivatives Containing theo-Aminothiophenolate Ligand toward Carbodiimide. Organometallics, 2006, 25, 4571-4578.	1.1	27
77	A three-dimensional structure built of paddle-wheel and triazolate-dinuclear metal clusters: synthesis, deformation and reformation of paddle-wheel unit in the single-crystal-to-single-crystal transformation. CrystEngComm, 2013, 15, 7031.	1.3	27
78	Pillar[5]arenes with an introverted amino group: a hydrogen bonding tuning effect. Organic and Biomolecular Chemistry, 2013, 11, 248-251.	1.5	27
79	Synthesis, structure, and catalytic activity of palladium complexes with new chiral cyclohexane-1,2-based di-NHC-ligands. Journal of Organometallic Chemistry, 2012, 700, 223-229.	0.8	26
80	One-dimensional (1D) helical and 2D homochiral metal–organic frameworks built from a new chiral octahydrobinaphthalene-derived dicarboxylic acid. Inorganic Chemistry Communication, 2008, 11, 948-950.	1.8	24
81	Preparation of Mononuclear, Homodinuclear, and Heterotrinuclear Complexes by Salicylaldiminatoâ€Functionalized Imidazolium Salt: Approach to Multifunctional Catalysts. Chemistry - A European Journal, 2011, 17, 11041-11051.	1.7	24
82	[C6N4H24]CoBe6P6O24·3H2O: a novel 3-dimensional beryllophosphate zeolite-like structure encapsulating Coll ions. Journal of Materials Chemistry, 2002, 12, 658-662.	6.7	23
83	Synthesis and structural characterization of lanthanide complexes with the di- or tri-anionic diguanidinate ligand: new insight into the flexibility and distinct reactivity of the linked diguanidinate ligand. Chemical Communications, 2007, , 2190.	2.2	23
84	Synthesis and structures of titanium and yttrium complexes with N,N′-tetramethylguanidinate ligands: different reactivity of the M–N bonds toward phenyl isocyanate. Dalton Transactions, 2009, , 1806.	1.6	23
85	Reactivity of Scorpionate-Anchored Yttrium Alkyl Complex toward Organic Nitriles. Organometallics, 2012, 31, 7213-7221.	1.1	23
86	A robust <i>etb</i> -type metal–organic framework showing polarity-exclusive adsorption of acetone over methanol for their azeotropic mixture. Chemical Communications, 2019, 55, 6495-6498.	2.2	23
87	Facile Construction of a Novel Aminoquinazolinate Anionic Ligand through Organolanthanide-Mediated Intermolecular Nucleophilic Addition/Cyclization of Anthranilonitrile. Inorganic Chemistry, 2008, 47, 5552-5554.	1.9	22
88	Metal complexes as templates: syntheses, structures, and luminescent properties of two zinc phosphonocarboxylates with ABW-zeolite topology. Dalton Transactions, 2012, 41, 4079.	1.6	22
89	Oxidation and coupling of β-diketiminate ligand in lanthanide complexes: Novel eight-nuclear lanthanide clusters with μ-, μ ₃ -Cl, and μ ₄ -O bridge. Dalton Transactions, 2012, 41, 357-359.	1.6	21
90	A Series of Metal–Organic Frameworks Built of Triazolate-Trinuclear and Paddlewheel Units: Solid-Solution Framework Approach for Optimizing CO ₂ Adsorption and Separation. Crystal Growth and Design, 2015, 15, 5794-5801.	1.4	21

#	Article	IF	CITATIONS
91	1,2,4â€Diazaphospholide Complexes of Tin(II): From Nitride Stannylene to Stannylenated Ammonium Ions. Chemistry - A European Journal, 2009, 15, 6581-6585.	1.7	20
92	1,2,4-Diazaphospholide Complexes of Barium: Mechanism of Formation and Crystallographic Characterization. Inorganic Chemistry, 2009, 48, 2967-2975.	1.9	20
93	Me–Si Bond Cleavage of Anionic Bis(trimethylsilyl)amide in Scorpionate-Anchored Rare Earth Metal Complexes. Inorganic Chemistry, 2012, 51, 10631-10638.	1.9	20
94	A flexible porous metal–azolate framework constructed by [Cu3(μ3-OH)(μ2-O)(triazolate)2]+ building blocks: synthesis, reversible structural transformation and related magnetic properties. CrystEngComm, 2013, 15, 3484.	1.3	20
95	Reticular chemistry approach to explore the catalytic CO2-epoxide cycloaddition reaction over tetrahedral coordination Lewis acidic sites in a Rutile-type Zinc-phosphonocarboxylate framework. Chemical Engineering Journal, 2022, 427, 131759.	6.6	20
96	Synthesis and Characterization of a Novel Organically Templated Open Framework Zirconogermanate with Three- and Seven-Membered Rings. Inorganic Chemistry, 2003, 42, 5960-5965.	1.9	19
97	A new family of dimeric lanthanide (III) complexes: Synthesis, structures and photophysical property. Journal of Molecular Structure, 2007, 871, 59-66.	1.8	19
98	End-End Connection Pattern of Trinuclear-Triangular Copper Cluster for Construction of Two Metal–Organic Frameworks: Syntheses, Structures, Magnetic and Gas Adsorption Properties. Crystal Growth and Design, 2015, 15, 1526-1534.	1.4	19
99	Synthesis of two luminescent coordination polymers based on self-assembly of Zn(II) with polycarboxylic acids ligands and heteroaromatic N-donor. Applied Organometallic Chemistry, 2006, 20, 44-50.	1.7	18
100	Hydrothermal synthesis and crystal structure of a novel luminescent europium complex of 2,5-pyridinedicarboxylic acid. Journal of Coordination Chemistry, 2005, 58, 811-816.	0.8	17
101	Facile Synthesis of Organolanthanide Hydrides with Metallic Potassium: Crystal Structures and Reactivity. Organometallics, 2011, 30, 4320-4324.	1.1	17
102	Reactivity of Scorpionate-Anchored Yttrium Alkyl Primary Amido Complexes toward Carbodiimides. Insertion Selectivity of Y–NHAr and Y–CH ₂ Ph Bonds. Organometallics, 2013, 32, 5409-5415.	1.1	17
103	Synthesis, structure and reactivity of dinuclear rare earth metal bis(o-aminobenzyl) complexes bearing a 1,4-phenylenediamidinate co-ligand. Dalton Transactions, 2013, 42, 8288.	1.6	17
104	Hydrothermal synthesis of two layered indium oxalates with 12-membered apertures. Journal of Solid State Chemistry, 2003, 173, 435-441.	1.4	16
105	Synthesis of Mixed Cp/Tp ^{Me2} Lanthanide Complexes from Lanthanocene Precursors and their Structures and Reactivities. Inorganic Chemistry, 2009, 48, 1774-1781.	1.9	16
106	Synthesis of Potassiumâ^'Magnesium Ate Complexes with a Bulky Diamido Ligand. Organometallics, 2009, 28, 5281-5284.	1.1	16
107	Room temperature C–N bond cleavage of anionic guanidinate ligand in rare-earth metal complexes. Dalton Transactions, 2013, 42, 5826.	1.6	16
108	Cation-Exchange Approach to Tuning the Flexibility of a Metal–Organic Framework for Gated Adsorption. Inorganic Chemistry, 2017, 56, 5069-5075.	1.9	16

#	Article	IF	CITATIONS
109	Facile construction of the guanidine substituent or guanidinate anionic ligand through addition of the adjacent amino group to carbodiimide. Dalton Transactions, 2009, , 3298.	1.6	15
110	Solvothermal in situ synthesis of cyanide-containing ternary silver(I) coordination polymers and their phosphorescent properties. CrystEngComm, 2012, 14, 1425-1431.	1.3	15
111	Synthesis, structure, and adsorption properties of a three-dimensional porous yttrium–organic coordination network. Microporous and Mesoporous Materials, 2007, 98, 16-20.	2.2	14
112	Insertion reaction of elemental sulfur into the Ln–C bond: Synthesis and characterization of [(C5H4SiMe2tBu)2Ln(μ-SR)]2 (R=Me, Ln=Yb, Er, Dy, Y; R=nBu, Ln=Yb, Dy). Polyhedron, 2007, 26, 4986-4992.	1.0	14
113	Unprecedented trinodal four-connected FRL MOF based on mixed ligands. Dalton Transactions, 2009, , 4847.	1.6	14
114	Synthesis and crystal structure of a novel luminescent zinc complex of 2-benzoylbenzoic acid. Journal of Coordination Chemistry, 2005, 58, 1417-1421.	0.8	13
115	Facile construction of novel organolanthanide square-planar macrocycles through addition of carbodiimide to an amino group. Dalton Transactions, 2007, , 2718.	1.6	13
116	Synthesis and characterization of nickel phosphonopropionate hybrid materials. Inorganic Chemistry Communication, 2007, 10, 447-450.	1.8	13
117	Systematic exploration of a rutile-type zinc(ii)–phosphonocarboxylate open framework: the factors that influence the structure. Dalton Transactions, 2010, 39, 10712.	1.6	13
118	Syntheses, structures and magnetic properties of two isostructural metal-phosphonate frameworks. Inorganica Chimica Acta, 2013, 402, 104-108.	1.2	13
119	New organically templated gallium oxalate-phosphate structures based on Ga4(PO4)4(C2O4) building unit. Journal of Solid State Chemistry, 2006, 179, 1931-1937.	1.4	12
120	Crystal engineering of zinc(ii) and copper(ii) complexes containing 3,5-dimethylisoxazole-4-carboxylate ligandvia O–Hâ<¯N, C–Hâ<¯A (A = N, O and Ï€) and bifurcated C–Hâ<¯N/O interactions. CrystEngComm, 200 35-38.	7, 19 3	12
121	Supramolecular architectures based on transition metal complexes with 1-(3-pyridyl)-2-(4′-pyrimidyl)ethene. CrystEngComm, 2008, 10, 915.	1.3	12
122	Controllable preparation and structures of two zinc phosphonocarboxylate frameworks with MER and RHO zeolitic topologies. CrystEngComm, 2013, 15, 7056.	1.3	12
123	Alkaline earth metal–organic frameworks supported by ditopic carboxylates. Journal of Coordination Chemistry, 2013, 66, 826-835.	0.8	11
124	Acid-induced Zn(<scp>ii</scp>)-based metal–organic frameworks for encapsulation and sensitization of lanthanide cations. CrystEngComm, 2015, 17, 2294-2300.	1.3	11
125	Three Zinc(II) Phosphonates: Syntheses, Structures and Sensing of Copper(II) Ions. ChemPlusChem, 2016, 81, 822-827.	1.3	10
126	Bioisosteric replacements of the indole moiety for the development of a potent and selective PI3Kδ inhibitor: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2021, 223, 113661.	2.6	10

#	Article	IF	CITATIONS
127	Hydrothermal synthesis and characterization of new hybrid open-framework indium phosphate-oxalates. Science Bulletin, 2004, 49, 658-664.	1.7	9
128	Amine-directed structural studies of four zinc metal-organic frameworks based on a novel phosphonocarboxylate ligand. Inorganic Chemistry Communication, 2013, 37, 93-96.	1.8	9
129	A Cu ^I â€Phosphonotriazolate Coordination Polymer Based on [Cu ^I ₄ Cl] Cluster for Fluorescent Sensing of O ₂ . ChemistrySelect, 2016, 1, 1917-1920.	0.7	9
130	Cobalt substitution in a flexible metal–organic framework: modulating a soft paddle-wheel unit for tunable gate-opening adsorption. Dalton Transactions, 2019, 48, 7100-7104.	1.6	9
131	Coordination and space confined preparation of nickel sub-nanoparticles within a metal-organic framework for catalytic degradation of methyl orange. Journal of Environmental Chemical Engineering, 2020, 8, 104363.	3.3	9
132	Hollow carbon nanospheres dotted with Gd–Fe nanoparticles for magnetic resonance and photoacoustic imaging. Nanoscale, 2021, 13, 10943-10952.	2.8	9
133	A New Open Metal-Organic Framework [Zn8(GeO4)(C8H4O4)6]n, Constructed by Heterometallic Cluster Zn8(GeO4) Secondary Building Units. Chemistry Letters, 2003, 32, 474-475.	0.7	8
134	Solvothermal synthesis and removal capacity for hydrogen chloride gas of Zn(OH)(NO3) with a rare (10,3)-d net. Journal of Solid State Chemistry, 2006, 179, 1230-1236.	1.4	8
135	The first lanthanide carboxylate complex constructed from hydroxyl bridging bimetallic units: Hydrothermal synthesis, crystal structure and luminescent properties. Inorganica Chimica Acta, 2007, 360, 3431-3435.	1.2	8
136	A novel unexpected two-dimensional layer-like luminescent dysprosium coordination polymer [Dy2(phth)3H2O]n by hydrothermal synthesis. Canadian Journal of Chemistry, 2004, 82, 1745-1751.	0.6	7
137	Two novel luminescent zinc supramolecular networks with nicotinate derivatives by hydrothermal process. Inorganic Chemistry Communication, 2005, 8, 1165-1168.	1.8	7
138	Syntheses and crystal structures of two novel lanthanide coordination compounds of 3-aminobenzoic acid. Journal of Coordination Chemistry, 2005, 58, 647-652.	0.8	7
139	Phase behavior and polymerization of lyotropic phases. II. A series of polymerizable amphiphiles with systematically varied critical packing parameters. Journal of Polymer Science Part A, 2006, 44, 5887-5897.	2.5	7
140	Synthesis and Reactivity of Cobalt Complexes with Pendant Nitrogen Functional Groups. European Journal of Inorganic Chemistry, 2007, 2007, 5127-5137.	1.0	7
141	Rare-earth metal-mediated addition/cyclization of the 2-cyanobenzoamino anion. Dalton Transactions, 2011, 40, 9098.	1.6	7
142	HCl chemisorption-induced drastic magneto-structural transformation in a layered cobalt–phosphonotriazolate coordination polymer. Dalton Transactions, 2016, 45, 10510-10513.	1.6	7
143	Bis(μ-5-phenyltetrazolate-κ2N2:N3)bis[(2,2′-bipyridine-κ2N,N′)bis(5-phenyltetrazolate-κN2)copper(II)]. A Crystallographica Section E: Structure Reports Online, 2004, 60, m225-m227.	cta 0.2	6
144	Two novel benzenedicarboxylate-metal complexes: synthesis, crystal structures and fluorescent properties. Applied Organometallic Chemistry, 2007, 21, 150-155.	1.7	6

#	Article	IF	CITATIONS
145	Predicting and creating 7-connected Zn ₄ O vertices for the construction of an exceptional metal–organic framework with nanoscale cages. CrystEngComm, 2015, 17, 1923-1926.	1.3	6
146	[Ni3(cit)2(pyz)(H2O)4](H2O)4: A New Three-dimensional Porous Coordination Polymer with a Pillared Layer Structure. Chemistry Letters, 2004, 33, 1514-1515.	0.7	5
147	Hydrothermal synthesis of a strongly luminescent dimeric dysprosium complex. Journal of Coordination Chemistry, 2005, 58, 841-847.	0.8	5
148	Insertion Reactions of PhEtCCO and PhNCO into Ln-S (Ln = Er, Y, Yb) Bond of [Cp2Ln(μ-SEt)]2. Journal of Rare Earths, 2006, 24, 9-14.	2.5	5
149	Synthesis of Fused Aminocarbaaluminum Hydrides by the Hydroalumination of Bulky Isocyanides. Organometallics, 2009, 28, 1263-1265.	1.1	5
150	Trans-1,2-diphenylethylene bridged salicylaldiminato–isoindoline titanium(IV) chloride complexes: Synthesis, characterization and catalytic polymerization. Journal of Organometallic Chemistry, 2013, 724, 155-162.	0.8	5
151	trans-1,2-Diphenylethylene Linked Isoindoline-Salicylaldiminato Nickel(II) Halide Complexes: Synthesis, Structure, Dehydrogenation, and Catalytic Activity toward Olefin Homopolymerization. European Journal of Inorganic Chemistry, 2013, 2013, 2093-2101.	1.0	5
152	Post-synthetic anchoring Fe(III) into a fcu-type Zr-MOF for the catalyzed hydrolysis of 5-hydroxylmethoxyfurfural. Microporous and Mesoporous Materials, 2021, 328, 111449.	2.2	5
153	Hollow carbon nanospheres embedded with stoichiometric γ-Fe ₂ O ₃ and GdPO ₄ : tuning the nanospheres for <i>in vitro</i> and <i>in vivo</i> size effect evaluation. Nanoscale Advances, 2022, 4, 1414-1421.	2.2	5
154	Synthesis and structure of a novel dimeric dysprosium complex of 3-amino-4-methylbenzoic acid. Journal of Coordination Chemistry, 2004, 57, 1413-1418.	0.8	4
155	Synthesis and Characterization of [Cp2Ln(μ-η1:η2-OC(SR)CPh2)]2 (R=Bn, Ph and Ln=Yb, Er, Y). Chinese Journal of Chemistry, 2006, 24, 231-234.	2.6	4
156	A two-dimensional Ni(II) coordination polymer built of 4-(1,2,4-triazol-4-yl)phenylphosphonate: Synthesis, structure and ferromagnetic magnetic property. Inorganica Chimica Acta, 2016, 447, 1-5.	1.2	4
157	A two-dimensional zinc Phosphonate: Synthesis, structure and photoluminescence properties. Inorganic Chemistry Communication, 2017, 84, 59-62.	1.8	4
158	Hydrothermal syntheses and anion-induced structural transformation of three Cadmium phosphonates. Journal of Solid State Chemistry, 2018, 261, 9-15.	1.4	4
159	(NH4)2ZrGe3O9: a new microporous zirconogermanate. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, i29-i31.	0.4	3
160	catena-Poly[[bis(1H-benzotriazole-l̂ºN3)cobalt(II)]-di-l̂¼-tricyanomethanido-l̂º2N:N′] andcatena-poly[[bis(3,5-dimethyl-1H-pyrazole-l̂ºN2)manganese(II)]-di-l̂¼-tricyanomethanido-l̂º2N:N′]. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, m250-m253.	0.4	3
161	Reactivity of lanthanocene hydroxides toward carbodiimide and CO2: Synthesis and characterization of lanthanide ureido and carbonate complexes. Journal of Organometallic Chemistry, 2011, 696, 2648-2653.	0.8	3
162	Precise regulating synergistic effect in metal–organic framework for stepwise-controlled adsorption. Inorganic Chemistry Frontiers, 2021, 8, 1666-1674.	3.0	3

#	Article	IF	CITATIONS
163	Multimetal lanthanide phosphonocarboxylate frameworks: structures, colour tuning and near-infrared emission. Dalton Transactions, 2021, 50, 7380-7387.	1.6	3
164	Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Longâ€Lasting Selfâ€Cleaning Textiles. Angewandte Chemie, 2022, 134, .	1.6	3
165	Syntheses, Crystal Structures, and Reversible Structural Transformation of Two Zinc Coordination Polymers. Chemistry Letters, 2014, 43, 997-998.	0.7	2
166	A Strong Luminescent Quaternary Dimeric Complex [Tb(BAA)2(Phen)(NO3)]2: Hydrothermal Synthesis, Structure, and Photophysics. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2005, 31, 445-451.	0.3	1
167	A Large 24-Membered-Ring Germanate Zeolite-Type Open-Framework Structure with Three-Dimensional Intersecting Channels. Angewandte Chemie - International Edition, 2001, 40, 2166-2168.	7.2	1
168	(NH4)2ZrGe3O9: A New Microporous Zirconogermanate ChemInform, 2003, 34, no.	0.1	0
169	Synthesis and Characterization of a Novel Organically Templated Open Framework Zirconogermanate with Three- and Seven-Membered Rings ChemInform, 2003, 34, no.	0.1	0
170	Hydrothermal synthesis and characterization of new hybrid open-framework indium phosphate-oxalates. Science Bulletin, 2004, 49, 658.	1.7	0
171	Dimethyl 2-(4-bromophenyl)-10,11-dimethoxy-2,3,7,8-tetrahydrospiro[azepino[2,1-a]isoquinoline-3,9′-fluorene]-4,5-dic Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, o680-o681.	arboxaylate	e. O
172	Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 0, , 1.	2.3	0
173	Unprecedented Ferromagnetic Exchange Coupling of a Square-Planar Cu ₄ O unit in a scu-Type Porous Metal–Organic Framework and Its Reticular Chemistry. Crystal Growth and Design, 0,	1.4	0