Florian Fröhlich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1584393/publications.pdf

Version: 2024-02-01

45 papers 4,114 citations

304368 22 h-index 276539 41 g-index

56 all docs

56 docs citations

56 times ranked 6445 citing authors

#	Article	IF	CITATIONS
1	Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature, 2008, 455, 1251-1254.	13.7	835
2	Triacylglycerol Synthesis Enzymes Mediate Lipid Droplet Growth by Relocalizing from the ER to Lipid Droplets. Developmental Cell, 2013, 24, 384-399.	3.1	623
3	Deep and Highly Sensitive Proteome Coverage by LC-MS/MS Without Prefractionation. Molecular and Cellular Proteomics, 2011, 10, M110.003699.	2.5	311
4	Seipin is required for converting nascent to mature lipid droplets. ELife, 2016, 5, .	2.8	292
5	Rab GTPase Function in Endosome and Lysosome Biogenesis. Trends in Cell Biology, 2018, 28, 957-970.	3.6	270
6	Global Proteome Turnover Analyses of the Yeasts S.Âcerevisiae and S.Âpombe. Cell Reports, 2014, 9, 1959-1965.	2.9	247
7	QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology. ELife, 2015, 4, .	2.8	141
8	Global analysis of the yeast osmotic stress response by quantitative proteomics. Molecular BioSystems, 2009, 5, 1337.	2.9	128
9	A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. Journal of Cell Biology, 2009, 185, 1227-1242.	2.3	123
10	Pkh-kinases control eisosome assembly and organization. EMBO Journal, 2007, 26, 4946-4955.	3 . 5	117
11	Vps39 Interacts with Tom40 to Establish One of Two Functionally Distinct Vacuole-Mitochondria Contact Sites. Developmental Cell, 2018, 45, 621-636.e7.	3.1	109
12	A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nature Structural and Molecular Biology, 2010, 17, 901-908.	3.6	93
13	The GARP complex is required for cellular sphingolipid homeostasis. ELife, 2015, 4, .	2.8	88
14	Endosome and Golgiâ€associated degradation (<scp>EGAD</scp>) of membrane proteins regulates sphingolipid metabolism. EMBO Journal, 2019, 38, e101433.	3.5	73
15	The unfolded protein response and endoplasmic reticulum protein targeting machineries converge on the stress sensor IRE1. ELife, 2018, 7, .	2.8	71
16	Native SILAC: Metabolic Labeling of Proteins in Prototroph Microorganisms Based on Lysine Synthesis Regulation. Molecular and Cellular Proteomics, 2013, 12, 1995-2005.	2.5	62
17	Seg1 controls eisosome assembly and shape. Journal of Cell Biology, 2012, 198, 405-420.	2.3	54
18	The transmission of nuclear pore complexes to daughter cells requires a cytoplasmic pool of Nsp1. Journal of Cell Biology, 2013, 203, 215-232.	2.3	53

#	Article	IF	CITATIONS
19	Live imaging of intra-lysosome pH in cell lines and primary neuronal culture using a novel genetically encoded biosensor. Autophagy, 2021, 17, 1500-1518.	4.3	52
20	A role for eisosomes in maintenance of plasma membrane phosphoinositide levels. Molecular Biology of the Cell, 2014, 25, 2797-2806.	0.9	41
21	A systematic approach to identify recycling endocytic cargo depending on the GARP complex. ELife, 2019, 8, .	2.8	30
22	The role of very long chain fatty acids in yeast physiology and human diseases. Biological Chemistry, 2020, 402, 25-38.	1.2	27
23	Rom2-dependent Phosphorylation of Elo2 Controls the Abundance of Very Long-chain Fatty Acids. Journal of Biological Chemistry, 2015, 290, 4238-4247.	1.6	26
24	Function of the <scp>SNARE</scp> Ykt6 on autophagosomes requires the Dsl1 complex and the Atg1 kinase complex. EMBO Reports, 2020, 21, e50733.	2.0	22
25	APâ€3 vesicle uncoating occurs after HOPSâ€dependent vacuole tethering. EMBO Journal, 2020, 39, e105117.	3.5	21
26	A Peroxisome Proliferator-Activated Receptor \hat{l}^3 -Retinoid X Receptor Heterodimer Physically Interacts with the Transcriptional Activator PAX6 to Inhibit Glucagon Gene Transcription. Molecular Pharmacology, 2008, 73, 509-517.	1.0	20
27	Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae. PLoS Genetics, 2020, 16, e1008745.	1.5	18
28	Compartmentation and functions of sphingolipids. Current Opinion in Cell Biology, 2022, 74, 104-111.	2.6	18
29	Proteomic and phosphoproteomic analyses of yeast reveal the global cellular response to sphingolipid depletion. Proteomics, 2016, 16, 2759-2763.	1.3	17
30	Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism. Journal of Lipid Research, 2017, 58, 226-235.	2.0	16
31	Unbiased proteomics identifies plasminogen activator inhibitor-1 as a negative regulator of endothelial nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9497-9507.	3.3	16
32	Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation. Science Signaling, 2015, 8, ra81.	1.6	14
33	A trimeric metazoan Rab7 GEF complex is crucial for endocytosis and scavenger function. Journal of Cell Science, 2020, 133, .	1.2	14
34	A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways. Journal of Cell Biology, 2022, 221, .	2.3	14
35	Cvm1 is a component of multiple vacuolar contact sites required for sphingolipid homeostasis. Journal of Cell Biology, 2022, 221, .	2.3	13
36	TOR complex 2 (TORC2) signaling and the ESCRT machinery cooperate in the protection of plasma membrane integrity in yeast. Journal of Biological Chemistry, 2020, 295, 12028-12044.	1.6	11

#	Article	IF	CITATIONS
37	Subunit exchange among endolysosomal tethering complexes is linked to contact site formation at the vacuole. Molecular Biology of the Cell, 2021, 32, br14.	0.9	11
38	The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity. Journal of Cell Biology, 2022, 221, .	2.3	6
39	The yeast LYST homolog Bph1 is a Rab5 effector and prevents Atg8 lipidation at endosomes. Journal of Cell Science, 2022, , .	1.2	3
40	Lowe syndrome–linked endocytic adaptors direct membrane cycling kinetics with OCRL in <i>Dictyostelium discoideum</i> . Molecular Biology of the Cell, 2019, 30, 2268-2282.	0.9	2
41	Comparing cellular proteomes by mass spectrometry. Genome Biology, 2009, 10, 240.	13.9	1
42	Mechanisms of Lipid Sorting in the Endosomal Pathway. Advances in Biomembranes and Lipid Self-Assembly, 2018, 28, 1-39.	0.3	0
43	Title is missing!. , 2020, 16, e1008745.		O
44	Title is missing!. , 2020, 16, e1008745.		0
45	Title is missing!. , 2020, 16, e1008745.		O