Anita R Maguire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1583916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modern Organic Synthesis with α-Diazocarbonyl Compounds. Chemical Reviews, 2015, 115, 9981-10080.	23.0	1,229
2	Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes. Plant Foods for Human Nutrition, 2007, 62, 85-91.	1.4	427
3	Asymmetric 1,3-dipolar cycloadditions of acrylamides. Chemical Society Reviews, 2010, 39, 845-883.	18.7	253
4	Bioactivities of Glycoalkaloids and Their Aglycones from Solanum Species. Journal of Agricultural and Food Chemistry, 2011, 59, 3454-3484.	2.4	227
5	Confab - Systematic generation of diverse low-energy conformers. Journal of Cheminformatics, 2011, 3, 8.	2.8	211
6	Fatty acid profile, tocopherol, squalene and phytosterol content of brazil, pecan, pine, pistachio and cashew nuts. International Journal of Food Sciences and Nutrition, 2006, 57, 219-228.	1.3	202
7	Taming Hazardous Chemistry in Flow: The Continuous Processing of Diazo and Diazonium Compounds. Chemistry - A European Journal, 2015, 21, 2298-2308.	1.7	163
8	Asymmetric synthesis in carbon–carbon bond forming reactions of α-diazoketones catalysed by homochiral rhodium(II) carboxylates. Journal of the Chemical Society Chemical Communications, 1990, , 361-362.	2.0	143
9	Catalytic asymmetric C–H insertion reactions of α-diazocarbonyl compounds. Tetrahedron, 2010, 66, 6681-6705.	1.0	120
10	Qualitative and quantitative comparison of the cytotoxic and apoptotic potential of phytosterol oxidation products with their corresponding cholesterol oxidation products. British Journal of Nutrition, 2005, 94, 443-451.	1.2	111
11	Cocrystals of Fenamic Acids with Nicotinamide. Crystal Growth and Design, 2011, 11, 3522-3528.	1.4	100
12	The norcaradiene–cycloheptatriene equilibrium. Tetrahedron, 2011, 67, 9-40.	1.0	100
13	Biocatalytic Approaches to the Henry (Nitroaldol) Reaction. European Journal of Organic Chemistry, 2012, 2012, 3059-3067.	1.2	100
14	Synthetic approaches to bicyclo[5.3.0]decane sesquiterpenes. Tetrahedron, 2010, 66, 1131-1175.	1.0	97
15	Comparison of the cytotoxic effects of β-sitosterol oxides and a cholesterol oxide, 7β-hydroxycholesterol, in cultured mammalian cells. British Journal of Nutrition, 2003, 90, 767-775.	1.2	91
16	Cocrystallization of Nutraceuticals. Crystal Growth and Design, 2015, 15, 984-1009.	1.4	87
17	Highly Enantioselective Intramolecular Copper Catalyzed Câ^'H Insertion Reactions of α-Diazosulfones. Journal of the American Chemical Society, 2010, 132, 1184-1185.	6.6	75
18	ReactNMR and ReactIR as Reaction Monitoring and Mechanistic Elucidation Tools: The NCS Mediated Cascade Reaction of α-Thioamides to α-Thio-l²-chloroacrylamides. Journal of Organic Chemistry, 2011, 76, 9630-9640.	1.7	64

#	Article	IF	CITATIONS
19	Copper-Catalyzed Asymmetric Oxidation of Sulfides. Journal of Organic Chemistry, 2012, 77, 3288-3296.	1.7	64
20	Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages. Life Sciences, 2013, 92, 775-782.	2.0	61
21	The intramolecular Buchner reaction of aryl diazoketones. Substituent effects and scope in synthesis. Journal of the Chemical Society Perkin Transactions 1, 1990, , 1047.	0.9	58
22	Asymmetric oxidation of sulfides. Journal of Sulfur Chemistry, 2013, 34, 301-341.	1.0	58
23	Selective manganese-mediated transformations using the combination:. Tetrahedron Letters, 1997, 38, 2339-2342.	0.7	55
24	Phytosterol Oxidation Products: Their Formation, Occurrence, and Biological Effects. Food Reviews International, 2009, 25, 157-174.	4.3	55
25	Enantioselective synthesis of non-natural amino acids using phenylalanine dehydrogenases modified by site-directed mutagenesis. Organic and Biomolecular Chemistry, 2004, 2, 2684.	1.5	54
26	Synthesis and evaluation of novel ellipticines as potential anti-cancer agents. Organic and Biomolecular Chemistry, 2013, 11, 1334.	1.5	54
27	Synthesis, isolation and characterisation of β-sitosterol and β-sitosterol oxide derivatives. Organic and Biomolecular Chemistry, 2005, 3, 3059.	1.5	50
28	Enantioselective Synthesis of Sulindac. Synlett, 2001, 2001, 0041-0044.	1.0	49
29	A novel CyclinE/CyclinA-CDK Inhibitor targets p27Kip1 degradation, cell cycle progression and cell survival: Implications in cancer therapy. Cancer Letters, 2013, 333, 103-112.	3.2	46
30	Dynamic Equilibria in the Products of Intramolecular Buchner Additions of Diazoketones to Aryl Rings Bearing Methoxy Substituents. Journal of Organic Chemistry, 2001, 66, 7166-7177.	1.7	45
31	Expanding the crystal landscape of isonicotinamide: concomitant polymorphism and co-crystallisation. CrystEngComm, 2011, 13, 6923.	1.3	45
32	Synthetic approaches towards nucleocidin and selected analogues; anti-HIV activity in 4′-fluorinated nucleoside derivatives. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1795-1808.	0.9	44
33	Selective Release of DNA from the Surface of Indiumâ^'Tin Oxide Thin Electrode Films Using Thiolâ^'Disulfide Exchange Chemistry. Analytical Chemistry, 2007, 79, 2050-2057.	3.2	43
34	Synthesis of indomethacin analogues for evaluation as modulators of MRP activity. Bioorganic and Medicinal Chemistry, 2001, 9, 745-762.	1.4	42
35	Total Synthesis and Biological Evaluation of Grassypeptolideâ€A. Chemistry - A European Journal, 2013, 19, 6774-6784.	1.7	41
36	Design and Synthesis of Ternary Cocrystals Using Carboxyphenols and Two Complementary Acceptor Compounds. Crystal Growth and Design, 2016, 16, 59-69.	1.4	40

#	Article	IF	CITATIONS
37	Taming tosyl azide: the development of a scalable continuous diazo transfer process. Organic and Biomolecular Chemistry, 2016, 14, 3423-3431.	1.5	40
38	Recent trends in whole cell and isolated enzymes in enantioselective synthesis. Arkivoc, 2012, 2012, 321-382.	0.3	40
39	Novel co-crystals of the nutraceutical sinapic acid. CrystEngComm, 2015, 17, 4832-4841.	1.3	39
40	Conformational States of HIV-1 Reverse Transcriptase for Nucleotide Incorporation vs Pyrophosphorolysis—Binding of Foscarnet. ACS Chemical Biology, 2016, 11, 2158-2164.	1.6	38
41	Characterisation, solubility and intrinsic dissolution behaviour of benzamide: dibenzyl sulfoxide cocrystal. International Journal of Pharmaceutics, 2012, 422, 24-32.	2.6	36
42	Cytotoxic and Apoptotic Effects of the Oxidized Derivatives of Stigmasterol in the U937 Human Monocytic Cell Line. Journal of Agricultural and Food Chemistry, 2010, 58, 10793-10798.	2.4	35
43	Asymmetric Synthesis of Aryl Benzyl Sulfoxides by Vanadium-Catalysed Oxidation: A Combination of Enantioselective Sulfide Oxidation and Kinetic Resolution in Sulfoxide Oxidation. European Journal of Organic Chemistry, 2006, 2006, 4500-4509.	1.2	33
44	Evaluation of the Bruker SMART X2S: crystallography for the nonspecialist?. Journal of Applied Crystallography, 2011, 44, 213-215.	1.9	33
45	Stereocontrol in the intramolecular Buchner reaction of diazoketones. Journal of the Chemical Society Perkin Transactions 1, 1998, , 4077-4092.	0.9	32
46	Synthesis and Characterization of Stigmasterol Oxidation Products. Journal of Agricultural and Food Chemistry, 2010, 58, 1165-1173.	2.4	32
47	Synthetic and mechanistic aspects of sulfonyl migrations. Organic and Biomolecular Chemistry, 2020, 18, 2549-2610.	1.5	32
48	Design and Synthesis of α-Carboxy Phosphononucleosides. Journal of Organic Chemistry, 2011, 76, 105-126.	1.7	30
49	Copper-Mediated, Heterogeneous, Enantioselective Intramolecular Buchner Reactions of α-Diazoketones Using Continuous Flow Processing. Journal of Organic Chemistry, 2018, 83, 3794-3805.	1.7	30
50	Phenylalanine dehydrogenase mutants: Efficient biocatalysts for synthesis of non-natural phenylalanine derivatives. Journal of Biotechnology, 2007, 128, 408-411.	1.9	29
51	Asymmetric copper-catalysed intramolecular C–H insertion reactions of α-diazo-β-keto sulfones. Organic and Biomolecular Chemistry, 2011, 9, 667-669.	1.5	29
52	Lipase catalysed kinetic resolutions of 3-aryl alkanoic acids. Tetrahedron: Asymmetry, 2011, 22, 47-61.	1.8	29
53	Investigation of steric and electronic effects in the copper-catalysed asymmetric oxidation of sulfides. Tetrahedron, 2013, 69, 10168-10184.	1.0	29
54	Alpha-carboxy nucleoside phosphonates as universal nucleoside triphosphate mimics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3475-3480.	3.3	29

#	Article	IF	CITATIONS
55	Crystal Landscape of Primary Aromatic Thioamides. Crystal Growth and Design, 2014, 14, 2753-2762.	1.4	28
56	Investigating C╣···I Halogen Bonding for Cocrystallization with Primary Thioamides. Crystal Growth and Design, 2015, 15, 3442-3451.	1.4	27
57	Symmetry assisted tuning of bending and brittle multi-component forms of probenecid. Chemical Communications, 2017, 53, 3381-3384.	2.2	27
58	1,3-Dipolar cycloadditions of 2-thio-3-chloroacrylamides with diazoalkanes. Organic and Biomolecular Chemistry, 2010, 8, 2735.	1.5	26
59	Understanding the <i>p</i> -Toluenesulfonamide/Triphenylphosphine Oxide Crystal Chemistry: A New 1:1 Cocrystal and Ternary Phase Diagram. Crystal Growth and Design, 2012, 12, 869-875.	1.4	26
60	Total synthesis of padanamides A and B. Chemical Communications, 2013, 49, 2977.	2.2	26
61	Sulfoxides: Potent Co-Crystal Formers. Crystal Growth and Design, 2010, 10, 4243-4245.	1.4	25
62	A Practical Synthesis of Biaryls via a Thermal Decarboxylative Pd-Catalyzed Cross-Coupling Reaction Operating at Moderate Temperature. Organic Process Research and Development, 2011, 15, 981-985.	1.3	25
63	Utilizing Sulfoxide···Iodine Halogen Bonding for Cocrystallization. Crystal Growth and Design, 2012, 12, 2969-2977.	1.4	25
64	Enantioselective copper catalysed C–H insertion reaction of 2-sulfonyl-2-diazoacetamides to form γ-lactams. Organic and Biomolecular Chemistry, 2014, 12, 7612-7628.	1.5	25
65	The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. European Journal of Organic Chemistry, 2019, 2019, 3713-3734.	1.2	25
66	The intramolecular Buchner reaction of aryl diazoketones. Synthesis and X-ray crystal structures of some polyfunctional hydroazulene lactones. Journal of the Chemical Society Perkin Transactions 1, 1990, , 1055.	0.9	24
67	Excellent stereocontrol in intramolecular Buchner cyclisations and subsequent cycloadditions; stereospecific construction of polycyclic systems. Chemical Communications, 1996, , 2595.	2.2	24
68	Investigation of the synthetic and mechanistic aspects of the highly stereoselective transformation of α-thioamides to α-thio-β-chloroacrylamides. Organic and Biomolecular Chemistry, 2007, 5, 1228-1241.	1.5	24
69	Cocrystals and a Salt of the Bioactive Flavonoid: Naringenin. Crystal Growth and Design, 2018, 18, 4571-4577.	1.4	23
70	Asymmetric Synthesis of <i>cis</i> -7-Methoxycalamenene via the Intramolecular Buchner Reaction of an α-Diazoketone. Journal of Organic Chemistry, 2012, 77, 2035-2040.	1.7	22
71	Catalyst and substituent effects on the rhodium(II)-catalysed intramolecular Buchner reaction. Tetrahedron, 2014, 70, 6870-6878.	1.0	22
72	The influence of reaction conditions on the Diels–Alder cycloadditions of 2-thio-3-chloroacrylamides; investigation of thermal, catalytic and microwave conditions. Organic and Biomolecular Chemistry, 2010, 8, 5602.	1.5	21

#	Article	IF	CITATIONS
73	Design and Synthesis of α-Carboxy Nucleoside Phosphonate Analogues and Evaluation as HIV-1 Reverse Transcriptase-Targeting Agents. Journal of Organic Chemistry, 2015, 80, 2479-2493.	1.7	21
74	Exploiting the Continuous in situ Generation of Mesyl Azide for Use in a Telescoped Process. European Journal of Organic Chemistry, 2017, 2017, 6533-6539.	1.2	21
75	Synthesis and assessment of the relative toxicity of the oxidised derivatives of campesterol and dihydrobrassicasterol in U937 and HepG2 cells. Biochimie, 2013, 95, 496-503.	1.3	20
76	Substrate and catalyst effects in C–H insertion reactions of α-diazoacetamides. Tetrahedron Letters, 2016, 57, 5399-5406.	0.7	20
77	Generation, Reactivity and Uses of Sulfines in Organic Synthesis. European Journal of Organic Chemistry, 2016, 2016, 1630-1650.	1.2	20
78	Rhodium catalysed decomposition of α-diazosulfoxides: Formation of α-oxo sulfines as intermediates. Tetrahedron Letters, 1998, 39, 3849-3852.	0.7	19
79	Catalyst, additive and counterion effects on the efficiency and enantioselectivity of copper-catalysed C–H insertion reactions of α-diazosulfones. Tetrahedron, 2013, 69, 1297-1301.	1.0	19
80	A study of the norcaradiene–cycloheptatriene equilibrium in a series of azulenones by NMR spectroscopy; the impact of substitution on the position of equilibrium. Organic and Biomolecular Chemistry, 2015, 13, 11026-11038.	1.5	19
81	Synthesis of α-diazo-β-oxo sulfoxides. Tetrahedron Letters, 1998, 39, 2819-2822.	0.7	18
82	Synthesis of aryl benzyl NH-sulfoximines. Tetrahedron, 2009, 65, 10660-10670.	1.0	18
83	Expanded scope of heterocyclic biaryl synthesis via a palladium-catalysed thermal decarboxylative cross-coupling reaction. Tetrahedron Letters, 2012, 53, 403-405.	0.7	18
84	Single step stereospecific transformation of 2-phenylthio secondary amides into (Z)-3-chloro-2-phenylthio acrylamides. Tetrahedron Letters, 1995, 36, 467-470.	0.7	17
85	Dynamic kinetic resolution in the baker's yeast mediated reduction of 2-Benzenesulfonylcycloalkanones. Tetrahedron Letters, 1999, 40, 9285-9288.	0.7	17
86	Matrix Isolation and Photochemistry of α-Diazo Sulfoxides: Formation of α-Oxo Sulfine as an Intermediate. European Journal of Organic Chemistry, 2000, 2000, 3329-3335.	1.2	17
87	New methods for the synthesis of N-benzoylated uridine and thymidine derivatives; a convenient method for N-debenzoylation. Carbohydrate Research, 2002, 337, 369-372.	1.1	17
88	The Use of Co-crystals for the Determination of Absolute Stereochemistry: An Alternative to Salt Formation. Journal of Organic Chemistry, 2011, 76, 1159-1162.	1.7	17
89	Copper-catalysed enantioselective intramolecular C–H insertion reactions of α-diazo-β-keto esters and α-diazo-β-keto phosphonates. Tetrahedron Letters, 2013, 54, 2799-2801.	0.7	17
90	Exploring the role of the α-carboxyphosphonate moiety in the HIV-RT activity of α-carboxy nucleoside phosphonates. Organic and Biomolecular Chemistry, 2016, 14, 2454-2465.	1.5	17

#	Article	IF	CITATIONS
91	Investigation of the reaction of α-thioamides, α-esters and α-nitriles with N-halosuccinimides. Tetrahedron, 2008, 64, 7639-7649.	1.0	16
92	Engineered dehydrogenase biocatalysts for non-natural amino acids: efficient isolation of the d-enantiomer from racemic mixtures. Organic and Biomolecular Chemistry, 2008, 6, 3611.	1.5	16
93	Does intermolecular Sî€Oâ∢H–C–Sî€O hydrogen bonding in sulfoxides and sulfones provide a robust supramolecular synthon in the solid state?. CrystEngComm, 2010, 12, 2910.	1.3	16
94	Addition-substitution reactions of 2-thio-3-chloroacrylamides with carbon, nitrogen, oxygen, sulfur and selenium nucleophiles. Organic and Biomolecular Chemistry, 2011, 9, 2452.	1.5	16
95	Oxidized Derivatives of Dihydrobrassicasterol: Cytotoxic and Apoptotic Potential in U937 and HepG2 Cells. Journal of Agricultural and Food Chemistry, 2012, 60, 5952-5961.	2.4	16
96	Synthetic approaches to the daucane sesquiterpene derivatives employing the intramolecular Buchner cyclisation of α-diazoketones. Tetrahedron, 2013, 69, 1778-1794.	1.0	16
97	Convenient and robust one-pot synthesis of symmetrical and unsymmetrical benzyl thioethers from benzyl halides using thiourea. Arkivoc, 2010, 2010, 216-228.	0.3	16
98	Enantioselective introduction of a benzenesulfonylmethyl substituent at an unactivated carbon atom via chemoenzymatic methods. Tetrahedron Letters, 1997, 38, 7459-7462.	0.7	15
99	Photochemistry ofcis-3-Diazo-5,6-dimethyl-1,4-oxathian-2-oneS-Oxide in Argon Matrices. European Journal of Organic Chemistry, 2006, 2006, 2918-2924.	1.2	15
100	Diastereoselective sulfur oxidation of 2-thio-3-chloroacrylamides. Tetrahedron: Asymmetry, 2010, 21, 871-884.	1.8	15
101	Efficient kinetic bioresolution of 2-nitrocyclohexanol. Tetrahedron: Asymmetry, 2010, 21, 1011-1016.	1.8	15
102	1,3-Dipolar cycloadditions of 2-thio-3-chloroacrylamides with nitrile oxides and nitrones. Tetrahedron, 2010, 66, 4564-4572.	1.0	15
103	Investigation of Additive Effects in Enantioselective Copper-Catalysed C-H Insertion and Aromatic Addition Reactions of α-Diazocarbonyl Compounds. Synlett, 2012, 23, 765-767.	1.0	15
104	Design and synthesis of stable α-diazo-β-oxo sulfoxides. Organic and Biomolecular Chemistry, 2013, 11, 1706.	1.5	15
105	Integration of high and low field 1H NMR to analyse the effects of bovine dietary regime on milk metabolomics and protein-bound moisture characterisation of the resulting mozzarella cheeses during ripening. International Dairy Journal, 2019, 91, 155-164.	1.5	15
106	Exploring the Scope of Asymmetric Synthesis of β-Hydroxy-γ-lactams via Noyori-type Reductions. Organic Letters, 2016, 18, 4978-4981.	2.4	14
107	Synthesis of Cyclic α-Diazo-β-keto Sulfoxides in Batch and Continuous Flow. Journal of Organic Chemistry, 2017, 82, 3666-3679.	1.7	14
108	Desymmetrization by Asymmetric Copper-Catalyzed Intramolecular C–H Insertion Reactions of α-Diazo-β-oxosulfones. Journal of Organic Chemistry, 2019, 84, 7543-7563.	1.7	14

#	Article	IF	CITATIONS
109	Investigation of the chemoselective and enantioselective oxidation of α-thio-β-chloroacrylamides. Tetrahedron: Asymmetry, 2008, 19, 1256-1273.	1.8	13
110	Heteroâ€Wolff Rearrangement of an αâ€Sulfinyl Carbene: Thermally Activated Intersystem Crossing of the Lowest Excited Triplet State of a Groundâ€State Singlet Carbene. European Journal of Organic Chemistry, 2014, 2014, 2297-2304.	1.2	13
111	Substrate and Catalyst Effects in the Enantioselective Copperâ€Catalysed C–H Insertion Reactions of αâ€Diazoâ€Î²â€oxo Sulfones. European Journal of Organic Chemistry, 2018, 2018, 2277-2289.	1.2	13
112	Regioselective Thermal [3+2]-Dipolar Cycloadditions of α-Diazoacetates with α -Sulfenyl/Sulfinyl/Sulfonyl-β -Chloroacrylamide Derivatives to Form Densely Functionalised Pyrazoles. European Journal of Organic Chemistry, 2019, 2019, 5368-5384.	1.2	13
113	Asymmetric reduction of 1-methylsulfonylalkan-2-ones with baker's yeast. Journal of the Chemical Society Perkin Transactions 1, 1997, , 235-238.	0.9	12
114	Impact of sulfur substituents on the C–Hâ∢¯O interaction of terminal alkynes in crystal engineering. CrystEngComm, 2007, 9, 1041.	1.3	12
115	Modifications to the Vilsmeierâ€Haack formylation of 1,4â€dimethylcarbazole and its application to the synthesis of ellipticines. Journal of Heterocyclic Chemistry, 2011, 48, 814-823.	1.4	12
116	Baker's‥eastâ€Mediated Reduction of Sulfurâ€Containing Compounds. European Journal of Organic Chemistry, 2014, 2014, 3737-3756.	1.2	12
117	The impact of storage conditions upon gentamicin coated antimicrobial implants. Journal of Pharmaceutical Analysis, 2016, 6, 374-381.	2.4	12
118	Enantioselective copper catalysed intramolecular C–H insertion reactions of α-diazo-β-keto sulfones, α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones; the influence of the carbene substituent. Organic and Biomolecular Chemistry, 2017, 15, 2609-2628.	1.5	12
119	Solubility Measurement and Thermodynamic Modeling of		

Anita R Maguire

#	Article	IF	CITATIONS
127	Organic synthesis with α-chlorosulphides. Conversion of phenols into γ-lactones using methyl-2-chloro-2-(alkyl or arylthio)carboxylates. Tetrahedron Letters, 1986, 27, 761-764.	0.7	9
128	Desmethylabietospiran, a Naturally Occurring Self-Gelation Agent. Journal of Natural Products, 2005, 68, 125-128.	1.5	9
129	Process Development and Pilot-Plant Synthesis of (2-Chlorophenyl)[2-(phenylsulfonyl)pyridin-3-yl]methanone. Organic Process Research and Development, 2010, 14, 1229-1238.	1.3	9
130	Electronic effects of aryl-substituted bis(oxazoline) ligands on the outcome of asymmetric copper-catalysed C–H insertion and aromatic addition reactions. Tetrahedron: Asymmetry, 2013, 24, 1265-1275.	1.8	9
131	Preparation of 2-Aminopyridoimidazoles and 2-Aminobenzimidazoles via Phosphorus Oxychloride-Mediated Cyclization of Aminoureas. Journal of Organic Chemistry, 2014, 79, 3688-3695.	1.7	9
132	Pronounced Inhibition Shift from HIV Reverse Transcriptase to Herpetic DNA Polymerases by Increasing the Flexibility of α-Carboxy Nucleoside Phosphonates. Journal of Medicinal Chemistry, 2015, 58, 8110-8127.	2.9	9
133	Guanine α-carboxy nucleoside phosphonate (G-α-CNP) shows a different inhibitory kinetic profile against the DNA polymerases of human immunodeficiency virus (HIV) and herpes viruses. Biochemical Pharmacology, 2017, 136, 51-61.	2.0	9
134	Dynamic kinetic resolution of 2-methyl-2-nitrocyclohexanol: Combining the intramolecular nitroaldol (Henry) reaction & lipase-catalysed resolution. Tetrahedron, 2018, 74, 1435-1443.	1.0	9
135	Genome mining and characterisation of a novel transaminase with remote stereoselectivity. Scientific Reports, 2019, 9, 20285.	1.6	9
136	Organic synthesis with α-chloro sulphides. Preparation of aromatic γ-lactones from phenols and α-chloro sulphide carboxylates. Journal of the Chemical Society Perkin Transactions 1, 1990, , 1041-1045.	0.9	8
137	Efficient kinetic resolution of 2-benzenesulfonylcyclopentanone derivatives. Journal of Molecular Catalysis B: Enzymatic, 1996, 1, 115-126.	1.8	8
138	Enantioselective Intramolecular Büchner Reaction of α-Diazoketones. Synlett, 2007, 2007, 2367-2370.	1.0	8
139	Development of O–H insertion for the attachment of phosphonates to nucleosides; synthesis of α-carboxy phosphononucleosides. Tetrahedron, 2012, 68, 1894-1909.	1.0	8
140	Leveraging an Industrial–Academic Partnership To Optimize Small Molecule Process Development within the Pharmaceutical Industry. Organic Process Research and Development, 2015, 19, 344-346.	1.3	8
141	Synthesis of novel 24-amino-25,26,27-trinorlanost-8-enes: Cytotoxic and apoptotic potential in U937 cells. Bioorganic and Medicinal Chemistry, 2015, 23, 2270-2280.	1.4	8
142	Development of a continuous process for α-thio-β-chloroacrylamide synthesis with enhanced control of a cascade transformation. Beilstein Journal of Organic Chemistry, 2016, 12, 2511-2522.	1.3	8
143	Hydrolase-mediated resolution of the hemiacetal in 2-chromanols: The impact of remote substitution. Tetrahedron: Asymmetry, 2017, 28, 577-585.	1.8	8
144	Pleiotropic role for monocyte C-fms protein in response to vascular injury: Potential therapeutic target. Atherosclerosis, 2011, 216, 74-82.	0.4	7

#	Article	IF	CITATIONS
145	Synthesis of Guanine α-Carboxy Nucleoside Phosphonate (G-α-CNP), a Direct Inhibitor of Multiple Viral DNA Polymerases. Journal of Organic Chemistry, 2018, 83, 10510-10517.	1.7	7
146	Synthesis and use of a cost-effective, aqueous soluble diazo transfer reagent – m-carboxybenzenesulfonyl azide. Tetrahedron Letters, 2019, 60, 35-39.	0.7	7
147	Chemoenzymatic methods in the asymmetric synthesis of α-diazosulfoxides. Arkivoc, 2003, 2003, 96-109.	0.3	7
148	Efficient construction of novel carbocyclic frameworks via intramolecular aromatic addition of diazoketones followed by Diels-Alder cycloaddition. Arkivoc, 2009, 2009, 130-151.	0.3	7
149	Generation of Tosyl Azide in Continuous Flow Using an Azide Resin, and Telescoping with Diazo Transfer and Rhodium Acetate-Catalyzed O–H Insertion. Organic Process Research and Development, 2021, 25, 2772-2785.	1.3	7
150	One or More CC Bond(s) by Elimination of S, Se, Te, N, P, As, Sb, Bi, Si, Ge, B or Metal Functions. , 1995, , 589-671.		6
151	Co-crystallisation through halogen bonding with racemic or enantiopure sulfinamides. CrystEngComm, 2013, 15, 7571.	1.3	6
152	Synthetic and Mechanistic Aspects on the Competition between C–H Insertion and Hydride Transfer in Copper-Mediated Transformations of α-Diazo-β-Keto Sulfones. Synlett, 2014, 25, 591-595.	1.0	6
153	Baker's Yeast Mediated Reduction of 2-Acetyl-3-methyl Sulfolane. Catalysts, 2014, 4, 186-195.	1.6	6
154	Impact of variation of the acyl group on the efficiency and selectivity of the lipase-mediated resolution of 2-phenylalkanols. Tetrahedron: Asymmetry, 2017, 28, 1144-1153.	1.8	6
155	Alpha-carboxynucleoside phosphonates: direct-acting inhibitors of viral DNA polymerases. Future Medicinal Chemistry, 2019, 11, 137-154.	1.1	6
156	Synthesis and stereoselective oxidation of α-thio-β-chloropropenyloxazolidin-2-ones. Tetrahedron: Asymmetry, 2010, 21, 2550-2558.	1.8	5
157	Stereoselective Synthesis of 2-Thio-3-Chloroacrylamides and Investigation of their Reactivity. Synlett, 2011, 2011, 1212-1232.	1.0	5
158	Delivering enhanced efficiency in the synthesis of α-diazosulfoxides by exploiting the process control enabled in flow. Journal of Flow Chemistry, 2016, 6, 226-233.	1.2	5
159	Exploring the Crystal Landscape of 3-Methyl-2-phenylbutyramide: Crystallization of Metastable Racemic Forms from the Stable Conglomerate. Crystal Growth and Design, 2018, 18, 3549-3557.	1.4	5
160	Chemoselectivity and Enantioselectivity in Copper-Catalysed Oxidation of Aryl Benzyl Sulfides. Synlett, 2007, 2007, 1501-1506.	1.0	4
161	A practical chemo-enzymatic approach to highly enantio-enriched cyanohydrin acetates. Tetrahedron: Asymmetry, 2011, 22, 2144-2150.	1.8	4
162	Synthesis of 1,2,5-oxathiazole- <i>S</i> -oxides by 1,3-dipolar cycloadditions of nitrile oxides to α-oxo sulfines. Organic and Biomolecular Chemistry, 2019, 17, 622-638.	1.5	4

#	Article	IF	CITATIONS
163	Localized Partitioning of Enantiomers in Solid Samples of Sulfoxides: Importance of Sampling Method in Determination of Enantiopurity. Journal of Organic Chemistry, 2020, 85, 10216-10221.	1.7	4
164	Dirhodium Carboxylate Catalysts from 2â€Fenchyloxy or 2â€Menthyloxy Arylacetic Acids: Enantioselective Câ''H Insertion, Aromatic Addition and Oxonium Ylide Formation/Rearrangement. ChemCatChem, 2021, 13, 4318-4324.	1.8	4
165	Telescoped diazo transfer and rhodium-catalysed S–H insertion in continuous flow. Tetrahedron Letters, 2021, 83, 153438.	0.7	4
166	Scale-up and Optimization of a Continuous Flow Synthesis of an α-Thio-β-chloroacrylamide. Organic Process Research and Development, 2020, 24, 1978-1987.	1.3	3
167	Synthesis and reactivity of α-sulfenyl-β-chloroenones, including oxidation and Stille cross-coupling to form chalcone derivatives. Tetrahedron, 2021, 88, 132091.	1.0	3
168	Exploiting Continuous Processing for Challenging Diazo Transfer and Telescoped Copper-Catalyzed Asymmetric Transformations. Journal of Organic Chemistry, 2021, 86, 13955-13982.	1.7	3
169	Cytotoxic and apoptotic potential of potato glycoalkaloids in a number of cancer cell lines. Journal of Agricultural Science and Applications, 2013, 02, 184-192.	0.2	3
170	Kinetic Resolution in Vanadium-Catalyzed Sulfur Oxidation as an Efficient Route to Enantiopure Aryl Benzyl Sulfoxides. Synlett, 2006, 2006, 1569-1573.	1.0	2
171	Microwave-Assisted Reactions of α-Diazosulfoxides to Form α-Oxosulfines. Synlett, 2008, 2008, 659-662.	1.0	2
172	Mechanistic Study of In Situ Generation and Use of Methanesulfonyl Azide as a Diazo Transfer Reagent with Realâ€Time Monitoring by FlowNMR. European Journal of Organic Chemistry, 2019, 2019, 3575-3580.	1.2	2
173	Identification of an Esterase Isolated Using Metagenomic Technology which Displays an Unusual Substrate Scope and its Characterisation as an Enantioselective Biocatalyst. Advanced Synthesis and Catalysis, 2019, 361, 2466-2474.	2.1	2
174	Efficient kinetic resolution of 2-benzenesulfonylcyclopentanone derivatives [J. Mol. Catal., 1 (1996) 115–126]. Journal of Molecular Catalysis B: Enzymatic, 1996, 2, 147-158.	1.8	1
175	4-Ethynyl-1,2-methylenedioxybenzene at 150â€K. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 412-413.	0.4	1
176	Selective \hat{I}^2 -oxidation of \hat{I}_{\pm} -sulfanyl amides. Tetrahedron, 2011, 67, 5494-5499.	1.0	1
177	Industry–Academia Partnership: The Synthesis and Solid‣tate Pharmaceutical Centre (SSPC) as a Collaborative Approach from Molecule to Medicine. Chemistry - A European Journal, 2018, 24, 499-503.	1.7	1
178	Epimers with distinct mechanical behaviours. CrystEngComm, 2021, 23, 5848-5855.	1.3	1
179	Enantioselective Synthesis of Non-Natural Amino Acids Using Phenylalanine Dehydrogenases Modified by Site-Directed Mutagenesis ChemInform, 2005, 36, no.	0.1	0
180	Enhancement of Enantioselection in the Copper-Catalysed Intramolecular Büchner Reaction by Variation of the Counterion. Synlett, 2009, 2009, e3-e3.	1.0	0

Anita R Maguire

#	Article	IF	CITATIONS
181	Investigating the influence of the sulfur oxidation state on solid state conformation. CrystEngComm, 2012, 14, 7848.	1.3	о
182	Halogen Bonding with Sulfur Functional Groups. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C651-C651.	0.0	0
183	Exploring the synthetic potential of a marine transaminase including discrimination at a remote stereocentre. Organic and Biomolecular Chemistry, 2021, 19, 188-198.	1.5	Ο
184	A Tribute to Prof. M. Anthony McKervey. Arkivoc, 2003, 2003, 1-3.	0.3	0
185	What can the Bruker SMART X2S do for me?. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s109-s109.	0.3	Ο
186	Hydrogen-bond motifs in polymorphs and cocrystals. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s70-s70.	0.3	0