Ilias Alevizos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/158387/publications.pdf Version: 2024-02-01

LUAS ALEVIZOS

#	Article	IF	CITATIONS
1	The Majority of MicroRNAs Detectable in Serum and Saliva Is Concentrated in Exosomes. PLoS ONE, 2012, 7, e30679.	2.5	880
2	Exosomes from human saliva as a source of microRNA biomarkers. Oral Diseases, 2010, 16, 34-38.	3.0	650
3	Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. Oncogene, 2001, 20, 6196-6204.	5.9	210
4	MicroRNAs as biomarkers in rheumatic diseases. Nature Reviews Rheumatology, 2010, 6, 391-398.	8.0	188
5	MicroRNA expression profiles as biomarkers of minor salivary gland inflammation and dysfunction in Sjögren's syndrome. Arthritis and Rheumatism, 2011, 63, 535-544.	6.7	168
6	Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19403-19407.	7.1	167
7	Variant form of STAT4 is associated with primary Sjögren's syndrome. Genes and Immunity, 2008, 9, 267-270.	4.1	165
8	miR-150 Promotes Renal Fibrosis in Lupus Nephritis by Downregulating SOCS1. Journal of the American Society of Nephrology: JASN, 2013, 24, 1073-1087.	6.1	149
9	Laser Capture Microdissection-Generated Target Sample for High-Density Oligonucleotide Array Hybridization. BioTechniques, 2000, 29, 530-536.	1.8	147
10	Sicca Syndrome Associated with Immune Checkpoint Inhibitor Therapy. Oncologist, 2019, 24, 1259-1269.	3.7	127
11	Oral graftâ€versusâ€host disease. Oral Diseases, 2008, 14, 396-412.	3.0	105
12	Genome-wide association studies in Sjögren's syndrome: What do the genes tell us about disease pathogenesis?. Autoimmunity Reviews, 2014, 13, 756-761.	5.8	94
13	Distinct Functions of Autoantibodies Against Interferon in Systemic Lupus Erythematosus: A Comprehensive Analysis of Anticytokine Autoantibodies in Common Rheumatic Diseases. Arthritis and Rheumatology, 2016, 68, 1677-1687.	5.6	94
14	MicroRNAs in Sjögren's syndrome as a prototypic autoimmune disease. Autoimmunity Reviews, 2010, 9, 618-621.	5.8	80
15	Klinefelter's syndrome (47,XXY) is in excess among men with Sjögren's syndrome. Clinical Immunology, 2016, 168, 25-29.	3.2	68
16	STIM1 and STIM2 protein deficiency in T lymphocytes underlies development of the exocrine gland autoimmune disease, SjĶgren's syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14544-14549.	7.1	61
17	Deep sequencing of short RNAs reveals novel microRNAs in minor salivary glands of patients with Sjögren's syndrome. Oral Diseases, 2012, 18, 127-131.	3.0	60
18	Identification of a Sjögren's syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons. PLoS Genetics, 2017, 13, e1006820.	3.5	60

ILIAS ALEVIZOS

#	Article	IF	CITATIONS
19	Targeting the Ca2+ Sensor STIM1 by Exosomal Transfer of Ebv-miR-BART13-3p is Associated with Sjögren's Syndrome. EBioMedicine, 2016, 10, 216-226.	6.1	59
20	Development of a gene transfer-based treatment for radiation-induced salivary hypofunction. Oral Oncology, 2010, 46, 4-8.	1.5	54
21	Isolation of Circulating MicroRNA in Saliva. Methods in Molecular Biology, 2013, 1024, 183-190.	0.9	52
22	T cell exosome–derived miR-142-3p impairs glandular cell function in Sjögren's syndrome. JCI Insight, 2020, 5, .	5.0	44
23	Late responses to adenoviral-mediated transfer of the aquaporin-1 gene for radiation-induced salivary hypofunction. Gene Therapy, 2017, 24, 176-186.	4.5	43
24	Genetics of Sjögren's syndrome. Clinical Immunology, 2017, 182, 41-47.	3.2	41
25	Association of Bone Morphogenetic Protein 6 With Exocrine Gland Dysfunction in Patients With Sjögren's Syndrome and in Mice. Arthritis and Rheumatism, 2013, 65, 3228-3238.	6.7	37
26	Transient detection of E1â€containing adenovirus in saliva after the delivery of a firstâ€generation adenoviral vector to human parotid gland. Journal of Gene Medicine, 2010, 12, 3-10.	2.8	36
27	Brief Report: Rare X Chromosome Abnormalities in Systemic Lupus Erythematosus and Sjögren's Syndrome. Arthritis and Rheumatology, 2017, 69, 2187-2192.	5.6	35
28	Establishment of Functional Acinar-like Cultures from Human Salivary Glands. Journal of Dental Research, 2015, 94, 304-311.	5.2	31
29	Evaluation of Recipients of Positive and Negative Secondary Findings Evaluations in a Hybrid CLIA-Research Sequencing Pilot. American Journal of Human Genetics, 2018, 103, 358-366.	6.2	29
30	The Chemokine Receptor CXCR3 Promotes CD8+ T Cell Accumulation in Uninfected Salivary Glands but Is Not Necessary after Murine Cytomegalovirus Infection. Journal of Immunology, 2018, 200, 1133-1145.	0.8	28
31	Predominant Glandular Cholinergic Dysautonomia in Patients With Primary Sjögren's Syndrome. Arthritis and Rheumatology, 2015, 67, 1345-1352.	5.6	27
32	Odontogenic carcinoma: a functional genomic comparison with oral mucosal squamous cell carcinoma. Oral Oncology, 2002, 38, 504-507.	1.5	25
33	Advances in salivary gland gene therapy – oral and systemic implications. Expert Opinion on Biological Therapy, 2015, 15, 1443-1454.	3.1	25
34	Comparative analysis of the 2016 ACRâ€EULAR and the 2002 AECG classification criteria for Sjögren's syndrome: Findings from the NIH cohort. Oral Diseases, 2018, 24, 184-190.	3.0	25
35	Clinical features of Sjögren's syndrome patients with autoantibodies against interferons. Clinical and Translational Medicine, 2019, 8, 1.	4.0	25
36	Significance and Implications of Patient-reported Xerostomia in Sjögren's Syndrome: Findings From the National Institutes of Health Cohort. EBioMedicine, 2016, 12, 270-279.	6.1	24

ILIAS ALEVIZOS

#	Article	IF	CITATIONS
37	Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren's syndrome. EBioMedicine, 2019, 48, 526-538.	6.1	24
38	Transcriptomic Segregation of Human Autoantigens Useful for the Diagnosis of Autoimmune Diseases. Molecular Diagnosis and Therapy, 2016, 20, 415-427.	3.8	23
39	Persistence of hAQP1 expression in human salivary gland cells following AdhAQP1 transduction is associated with a lack of methylation of hCMV promoter. Gene Therapy, 2015, 22, 758-766.	4.5	22
40	Elucidating the role of hyposalivation and autoimmunity in oral candidiasis. Oral Diseases, 2017, 23, 387-394.	3.0	22
41	mi <scp>RNA</scp> expression profile of mucoepidermoid carcinoma. Oral Diseases, 2018, 24, 537-543.	3.0	20
42	Profiling Autoantibodies against Salivary Proteins in Sicca Conditions. Journal of Dental Research, 2019, 98, 772-778.	5.2	18
43	World Workshop on Oral Medicine VII: Clinical evidence of differential expression of IncRNAs in oral squamous cell carcinoma: A scoping review. Oral Diseases, 2019, 25, 88-101.	3.0	17
44	Laser microdissection coupled with RNA-seq reveal cell-type and disease-specific markers in the salivary gland of SjĶgren's syndrome patients. Clinical and Experimental Rheumatology, 2017, 35, 777-785.	0.8	17
45	Gross Cystic Disease Fluid Protein-15(GCDFP-15)/Prolactin-Inducible Protein (PIP) as Functional Salivary Biomarker for Primary Sjögren's Syndrome. Journal of Genetic Syndromes & Gene Therapy, 2013, 04, .	0.2	16
46	Autoantibodies against the Immunoglobulin-Binding Region of Ro52 Link its Autoantigenicity with Pathogen Neutralization. Scientific Reports, 2018, 8, 3345.	3.3	14
47	World Workshop on Oral Medicine VII: Functional pathways involving differentially expressed IncRNAs in oral squamous cell carcinoma. Oral Diseases, 2019, 25, 79-87.	3.0	14
48	Microarray analysis of sexually dimorphic gene expression in human minor salivary glands. Oral Diseases, 2011, 17, 653-661.	3.0	13
49	Emerging landscape of non oding <scp>RNA</scp> s in oral health and disease. Oral Diseases, 2014, 20, 226-235.	3.0	12
50	lmmune reactivity after adenoviralâ€mediated aquaporinâ€1 <scp>cDNA</scp> transfer to human parotid glands. Oral Diseases, 2017, 23, 337-346.	3.0	12
51	Altered Antibody Profiles against Common Infectious Agents in Chronic Disease. PLoS ONE, 2013, 8, e81635.	2.5	10
52	Linking Hepatic Transcriptional Changes to High–Fat Diet Induced Physiology for Diabetes-Prone and Obese-Resistant Mice. Cell Cycle, 2007, 6, 1631-1638.	2.6	9
53	Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells. Journal of Biological Chemistry, 2016, 291, 8709-8720.	3.4	9
54	Analysis of oral bacterial communities: comparison of HOMI <i>NGS</i> with a tree-based approach implemented in QIIME. Journal of Oral Microbiology, 2019, 11, 1586413.	2.7	9

ILIAS ALEVIZOS

#	Article	IF	CITATIONS
55	MicroRNA-mediated Regulation of Mucin-type O-glycosylation Pathway: A Putative Mechanism of Salivary Gland Dysfunction in Sjögren Syndrome. Journal of Rheumatology, 2019, 46, 1485-1494.	2.0	8
56	Adrenomedullary Response to Glucagon in Patients with Primary Sjögren's Syndrome. Cellular and Molecular Neurobiology, 2012, 32, 903-906.	3.3	7
57	Neutralizing antibodies against adeno-associated viruses in Sjögren's patients: implications for gene therapy. Gene Therapy, 2017, 24, 241-244.	4.5	7
58	Discovery and validation of novel microRNAs in Sjögren's syndrome salivary glands. Clinical and Experimental Rheumatology, 2014, 32, 761-2.	0.8	7
59	Human and Viral microRNA Expression in Sjögren Syndrome. Journal of Rheumatology, 2014, 41, 2102-2103.	2.0	5
60	Linking physiology and transcriptional profiles by quantitative predictive models. Biotechnology and Bioengineering, 2007, 98, 252-260.	3.3	4
61	552. Transduction of Salivary Gland Acinar Cells in Rodents with Adeno Associated Viral Vectors Results in Persistent Exocrine and Endocrine Release of Recombinant Proteins. Molecular Therapy, 2015, 23, S221.	8.2	1
62	SjĶgren Syndrome. , 2019, , 735-742.e1.		1
63	THU0304â€Gross Cystic Disease Fluid Protein-15(GCDFP-15)/Prolactin-Inducible Protein (PIP): A Functional Salivary Biomarker for Primary SjöGren's Syndrome?. Annals of the Rheumatic Diseases, 2013, 72, A268.4-A269.	0.9	0
64	325. Persistence of hAQP1 Expression in Human Salivary Gland Cells Following AdhAQP1 Transduction Is Associated With a Lack of Methylation of hCMV Promoter. Molecular Therapy, 2015, 23, S131.	8.2	0
65	OP0081â€Identification of a Sjögren's Syndrome-Associated Variant that Influences OAS1 Isoform Switching and Protein Expression. Annals of the Rheumatic Diseases, 2015, 74, 99.2-99.	0.9	0
66	SAT0001â€Identification of Sjögren's Syndrome Risk Loci near TNFAIP3 and PRDM1. Annals of the Rheumatic Diseases, 2016, 75, 664.1-664.	0.9	0
67	Natural Killer Cell Transcript 4 promotes the development of SjÓ§gren's syndrome via activation of Rap1 on B cells. Journal of Autoimmunity, 2021, 116, 102559	6.5	0
68	Into the Future: Autonomic Neuropathy, MicroRNAs, and Gene Therapy. , 2011, , 483-488.		0