Jeffrey I Gordon ## List of Publications by Citations Source: https://exaly.com/author-pdf/1583012/jeffrey-i-gordon-publications-by-citations.pdf Version: 2024-04-28 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. 46,611 96 110 57 h-index g-index citations papers 6.87 57,845 110 23.4 avg, IF L-index ext. citations ext. papers | # | Paper | IF | Citations | |----|---|----------------|-----------| | 96 | QIIME allows analysis of high-throughput community sequencing data. <i>Nature Methods</i> , 2010 , 7, 335-6 | 21.6 | 22879 | | 95 | Human gut microbiome viewed across age and geography. <i>Nature</i> , 2012 , 486, 222-7 | 50.4 | 4616 | | 94 | Gut microbiota from twins discordant for obesity modulate metabolism in mice. <i>Science</i> , 2013 , 341, 124 | l 1323134 | 2251 | | 93 | Commensal host-bacterial relationships in the gut. <i>Science</i> , 2001 , 292, 1115-8 | 33.3 | 1698 | | 92 | Molecular analysis of commensal host-microbial relationships in the intestine. <i>Science</i> , 2001 , 291, 881-4 | 33.3 | 1645 | | 91 | Radiation-induced cell cycle arrest compromised by p21 deficiency. <i>Nature</i> , 1995 , 377, 552-7 | 50.4 | 1119 | | 90 | The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. <i>Nature Reviews Microbiology</i> , 2013 , 11, 497-504 | 22.2 | 811 | | 89 | Persistent gut microbiota immaturity in malnourished Bangladeshi children. <i>Nature</i> , 2014 , 510, 417-21 | 50.4 | 703 | | 88 | Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. <i>Nature</i> , 1997 , 386, 796-80 | 0 4 0.4 | 645 | | 87 | Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. <i>Cell Host and Microbe</i> , 2008 , 4, 447-57 | 23.4 | 549 | | 86 | Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 6252-7 | 11.5 | 499 | | 85 | Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. <i>PLoS Biology</i> , 2011 , 9, e1001221 | 9.7 | 480 | | 84 | Identifying genetic determinants needed to establish a human gut symbiont in its habitat. <i>Cell Host and Microbe</i> , 2009 , 6, 279-89 | 23.4 | 473 | | 83 | Molecular mechanics of calcium-myristoyl switches. <i>Nature</i> , 1997 , 389, 198-202 | 50.4 | 423 | | 82 | Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. <i>Science</i> , 2016 , 351, | 33.3 | 406 | | 81 | Predicting a human gut microbiota's response to diet in gnotobiotic mice. <i>Science</i> , 2011 , 333, 101-4 | 33.3 | 391 | | 80 | The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. <i>Science Translational Medicine</i> , 2011 , 3, 106ra106 | 17.5 | 384 | ## (2015-2016) | 79 | Sialylated Milk Oligosaccharides Promote Microbiota-Dependent Growth in Models of Infant Undernutrition. <i>Cell</i> , 2016 , 164, 859-71 | 56.2 | 370 | |----|--|----------------|-----| | 78 | Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. <i>Cell Metabolism</i> , 2015 , 22, 516-530 | 24.6 | 325 | | 77 | induces gut intraepithelial CD4CD8∄r cells. <i>Science</i> , 2017 , 357, 806-810 | 33.3 | 300 | | 76 | Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. <i>Nature</i> , 2014 , 515, 423-6 | 50.4 | 249 | | 75 | Bacteria from diverse habitats colonize and compete in the mouse gut. <i>Cell</i> , 2014 , 159, 253-66 | 56.2 | 226 | | 74 | Dissecting the in vivo metabolic potential of two human gut acetogens. <i>Journal of Biological Chemistry</i> , 2010 , 285, 22082-90 | 5.4 | 225 | | 73 | Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. <i>Science Translational Medicine</i> , 2015 , 7, 276ra24 | 17.5 | 213 | | 72 | Genome-wide association study of Arabidopsis thaliana leaf microbial community. <i>Nature Communications</i> , 2014 , 5, 5320 | 17.4 | 198 | | 71 | Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11941-6 | 11.5 | 189 | | 70 | Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. <i>PLoS Biology</i> , 2013 , 11, e1001637 | 9.7 | 184 | | 69 | Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. <i>Nature</i> , 2016 , 534, 263-6 | 50.4 | 180 | | 68 | Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. <i>Immunity</i> , 2014 , 41, 414-426 | 32.3 | 179 | | 67 | A microbial perspective of human developmental biology. <i>Nature</i> , 2016 , 535, 48-55 | 50.4 | 172 | | 66 | Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. <i>Science</i> , 2019 , 365, | 33.3 | 160 | | 65 | Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. <i>Nature</i> , 2017 , 546, 528- | 5 3 2.4 | 148 | | 64 | Honor thy gut symbionts redux. <i>Science</i> , 2012 , 336, 1251-3 | 33.3 | 145 | | 63 | Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. <i>BioEssays</i> , 1998 , 20, 336-43 | 4.1 | 143 | | 62 | Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. <i>Science</i> , 2015 , 350, aac5992 | 33.3 | 138 | | 61 | Studies of intestinal stem cells using normal, chimeric, and transgenic mice. FASEB Journal, 1992, 6, 303 | 90590 | 134 | |----|--|-------------------|-----| | 60 | Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9105-E9114 | 4 ^{11.5} | 132 | | 59 | Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. <i>Science</i> , 2016 , 352, 1533 | 33.3 | 131 | | 58 | The human gut microbiota and undernutrition. Science Translational Medicine, 2012, 4, 137ps12 | 17.5 | 128 | | 57 | Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. <i>Cell</i> , 2015 , 163, 95-107 | 56.2 | 124 | | 56 | The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. <i>Science Translational Medicine</i> , 2017 , 9, | 17.5 | 117 | | 55 | Genetic studies reveal that myristoylCoA:protein N-myristoyltransferase is an essential enzyme in Candida albicans. <i>Molecular Microbiology</i> , 1995 , 16, 241-50 | 4.1 | 114 | | 54 | Transposable elements drive widespread expression of oncogenes in human cancers. <i>Nature Genetics</i> , 2019 , 51, 611-617 | 36.3 | 112 | | 53 | Cultivating healthy growth and nutrition through the gut microbiota. Cell, 2015, 161, 36-48 | 56.2 | 104 | | 52 | Interspecies Competition Impacts Targeted Manipulation of Human Gut Bacteria by Fiber-Derived Glycans. <i>Cell</i> , 2019 , 179, 59-73.e13 | 56.2 | 103 | | 51 | Structure of N-myristoyltransferase with bound myristoylCoA and peptide substrate analogs. <i>Nature Structural Biology</i> , 1998 , 5, 1091-7 | | 103 | | 50 | Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Responses to Diet Interventions. <i>Cell Host and Microbe</i> , 2017 , 21, 84-96 | 23.4 | 99 | | 49 | Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 14105-12 | 11.5 | 98 | | 48 | Where next for microbiome research?. <i>PLoS Biology</i> , 2015 , 13, e1002050 | 9.7 | 97 | | 47 | Comparative analysis of the beta transducin family with identification of several new members including PWP1, a nonessential gene of Saccharomyces cerevisiae that is divergently transcribed from NMT1. <i>Proteins: Structure, Function and Bioinformatics</i> , 1992 , 13, 41-56 | 4.2 | 87 | | 46 | Mining the human gut microbiota for effector strains that shape the immune system. <i>Immunity</i> , 2014 , 40, 815-23 | 32.3 | 82 | | 45 | A sparse covarying unit that describes healthy and impaired human gut microbiota development. <i>Science</i> , 2019 , 365, | 33.3 | 74 | | 44 | Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. <i>Cell</i> , 2019 , 179, 1144-1159.e15 | 56.2 | 66 | | 43 | Structures of Saccharomyces cerevisiae N-myristoyltransferase with bound myristoylCoA and peptide provide insights about substrate recognition and catalysis. <i>Biochemistry</i> , 2001 , 40, 6335-43 | 3.2 | 66 | |----|---|-------------------|----| | 42 | Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. <i>Cell Reports</i> , 2018 , 22, 3440-3453.e6 | 10.6 | 65 | | 41 | The Gut Microbiota, Food Science, and Human Nutrition: A Timely Marriage. <i>Cell Host and Microbe</i> , 2017 , 22, 134-141 | 23.4 | 63 | | 40 | Targeting of proteins into the eukaryotic secretory pathway: signal peptide structure/function relationships. <i>BioEssays</i> , 1990 , 12, 479-84 | 4.1 | 57 | | 39 | A Microbiota-Directed Food Intervention for Undernourished Children. <i>New England Journal of Medicine</i> , 2021 , 384, 1517-1528 | 59.2 | 53 | | 38 | Novel biologically active nonpeptidic inhibitors of myristoylCoA:protein N-myristoyltransferase. <i>Journal of Medicinal Chemistry</i> , 1998 , 41, 996-1000 | 8.3 | 49 | | 37 | Identifying strains that contribute to complex diseases through the study of microbial inheritance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 633-40 | 11.5 | 48 | | 36 | Duodenal Microbiota in Stunted Undernourished Children with Enteropathy. <i>New England Journal of Medicine</i> , 2020 , 383, 321-333 | 59.2 | 48 | | 35 | Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 11988-11996 | 11.5 | 39 | | 34 | Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. <i>Journal of Biological Chemistry</i> , 2015 , 290, 12630-49 | 5.4 | 38 | | 33 | gamma-Ray-induced apoptosis in transgenic mice with proliferative abnormalities in their intestinal epithelium: re-entry of villus enterocytes into the cell cycle does not affect their radioresistance but enhances the radiosensitivity of the crypt by inducing p53. <i>Oncogene</i> , 1997 , 15, 131-41 | 9.2 | 35 | | 32 | Understanding the mother-breastmilk-infant "triad". Science, 2020, 367, 1070-1072 | 33.3 | 33 | | 31 | Bangladesh Environmental Enteric Dysfunction (BEED) study: protocol for a community-based intervention study to validate non-invasive biomarkers of environmental enteric dysfunction. <i>BMJ Open</i> , 2017 , 7, e017768 | 3 | 32 | | 30 | Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition. <i>Science Translational Medicine</i> , 2016 , 8, 366ra164 | 17.5 | 31 | | 29 | Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14805-1481 | 0 ^{11.5} | 30 | | 28 | The absence of a microbiota enhances TSLP expression in mice with defective skin barrier but does not affect the severity of their allergic inflammation. <i>Journal of Investigative Dermatology</i> , 2013 , 133, 2714-2721 | 4.3 | 28 | | 27 | A multi-amplicon 16S rRNA sequencing and analysis method for improved taxonomic profiling of bacterial communities. <i>Journal of Microbiological Methods</i> , 2018 , 154, 6-13 | 2.8 | 27 | | 26 | Bioremediation of a Common Product of Food Processing by a Human Gut Bacterium. <i>Cell Host and Microbe</i> , 2019 , 26, 463-477.e8 | 23.4 | 23 | | 25 | Food and microbiota in the FDA regulatory framework. Science, 2017, 357, 39-40 | 33.3 | 21 | |----|---|------|----| | 24 | Combined Prebiotic and Microbial Intervention Improves Oral Cholera Vaccination Responses in a Mouse Model of Childhood Undernutrition. <i>Cell Host and Microbe</i> , 2020 , 27, 899-908.e5 | 23.4 | 19 | | 23 | Identifying determinants of bacterial fitness in a model of human gut microbial succession. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2622-2633 | 11.5 | 18 | | 22 | Diarrhea as a Potential Cause and Consequence of Reduced Gut Microbial Diversity Among Undernourished Children in Peru. <i>Clinical Infectious Diseases</i> , 2020 , 71, 989-999 | 11.6 | 18 | | 21 | MyristoylCoA:protein N-myristoyltransferase. <i>Advances in Enzymology and Related Areas of Molecular Biology</i> , 1993 , 67, 375-430 | | 16 | | 20 | Proteolytic processing and compartmentalization of the primary translation products of mammalian apolipoprotein mRNAs. <i>Critical Reviews in Biochemistry</i> , 1986 , 20, 37-71 | | 15 | | 19 | Attenuated Effects of Bile Acids on Glucose Metabolism and Insulin Sensitivity in a Male Mouse Model of Prenatal Undernutrition. <i>Endocrinology</i> , 2017 , 158, 2441-2452 | 4.8 | 13 | | 18 | Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. <i>Nature</i> , 2021 , 595, 91-95 | 50.4 | 13 | | 17 | Response from Jeffrey I. Gordon et al.: Commensal bacteria make a difference. <i>Trends in Microbiology</i> , 2003 , 11, 150-1 | 12.4 | 11 | | 16 | Study of Environmental Enteropathy and Malnutrition (SEEM) in Pakistan: protocols for biopsy based biomarker discovery and validation. <i>BMC Pediatrics</i> , 2019 , 19, 247 | 2.6 | 10 | | 15 | Proof-of-concept study of the efficacy of a microbiota-directed complementary food formulation (MDCF) for treating moderate acute malnutrition. <i>BMC Public Health</i> , 2020 , 20, 242 | 4.1 | 9 | | 14 | treatment promotes weight gain in Bangladeshi infants with severe acute malnutrition <i>Science Translational Medicine</i> , 2022 , 14, eabk1107 | 17.5 | 9 | | 13 | Biosynthesis and compartmentalization of rat-intestinal vitamin-D-dependent calcium-binding protein. <i>FEBS Journal</i> , 1984 , 139, 561-71 | | 8 | | 12 | MyristoylCoA:protein N-Myristoyltransferase: Probing Host-Guest Interactions Using Synthetic Substrates. <i>Israel Journal of Chemistry</i> , 1992 , 32, 127-133 | 3.4 | 4 | | 11 | Microbiota functional activity biosensors for characterizing nutrient metabolism in vivo. <i>ELife</i> , 2021 , 10, | 8.9 | 4 | | 10 | Strain-level functional variation in the human gut microbiota based on bacterial binding to artificial food particles. <i>Cell Host and Microbe</i> , 2021 , 29, 664-673.e5 | 23.4 | 4 | | 9 | Gut microbiome contributions to altered metabolism in a pig model of undernutrition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118, | 11.5 | 3 | | 8 | Products of gut microbial Toll/interleukin-1 receptor domain NADase activities in gnotobiotic mice and Bangladeshi children with malnutrition <i>Cell Reports</i> , 2022 , 39, 110738 | 10.6 | 2 | ## LIST OF PUBLICATIONS | 7 | Experimental Models of Symbiotic Host-Microbial Relationships: Understanding the Underpinnings of Beneficence and the Origins of Pathogenesis 2014 , 147-166 | | 1 | |---|---|------|---| | 6 | Synthesis of novel tritium labeled oxamyristic acids. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> , 1991 , 29, 157-164 | 1.9 | 1 | | 5 | Melding microbiome and nutritional science with early child development. <i>Nature Medicine</i> , 2021 , 27, 1503-1506 | 50.5 | 1 | | 4 | HostEnicrobial symbiosis in the mammalian intestine: exploring an internal ecosystem 1998 , 20, 336 | | 1 | | 3 | Gut microbiome development and childhood undernutrition Cell Host and Microbe, 2022, 30, 617-626 | 23.4 | 1 | | 2 | An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2123411119 | 11.5 | Ο | The Human Intestinal Microbiota and Microbiome635-644