
Cei Abreu-Goodger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1582393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiscale analysis of the randomization limits of the chromosomal gene organization between Lepidoptera and Diptera. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212183.	2.6	2
2	Triploid-induced complete sterility in the scallop Nodipecten subnodosus might be triggered by an early and sustained DNA damage response. Aquaculture, 2022, 559, 738422.	3.5	2
3	A de novo transcriptional atlas in Danaus plexippus reveals variability in dosage compensation across tissues. Communications Biology, 2021, 4, 791.	4.4	9
4	Disentangling sRNA-Seq data to study RNA communication between species. Nucleic Acids Research, 2020, 48, e21-e21.	14.5	8
5	Axonal precursor mi <scp>RNA</scp> s hitchhike on endosomesÂand locally regulate the development of neural circuits. EMBO Journal, 2020, 39, e102513.	7.8	57
6	Narnaviruses: novel players in fungal–bacterial symbioses. ISME Journal, 2020, 14, 1743-1754.	9.8	34
7	Secretion of an Argonaute protein by a parasitic nematode and the evolution of its siRNA guides. Nucleic Acids Research, 2019, 47, 3594-3606.	14.5	75
8	Highlights of the miniâ€symposium on extracellular vesicles in interâ€organismal communication, held in Munich, Germany, August 2018. Journal of Extracellular Vesicles, 2019, 8, 1590116.	12.2	16
9	Sex determination and differentiation genes in a functional hermaphrodite scallop, Nodipecten subnodosus. Marine Genomics, 2018, 37, 161-175.	1.1	16
10	Danger signals activate a putative innate immune system during regeneration in a filamentous fungus. PLoS Genetics, 2018, 14, e1007390.	3.5	27
11	Identification of miR-708-5p in peripheral blood monocytes: Potential marker for postmenopausal osteoporosis in Mexican-Mestizo population. Experimental Biology and Medicine, 2018, 243, 1027-1036.	2.4	10
12	miR-182 Regulates Slit2-Mediated Axon Guidance by Modulating the Local Translation of a Specific mRNA. Cell Reports, 2017, 18, 1171-1186.	6.4	82
13	RNA-mediated communication between helminths and their hosts: The missing links. RNA Biology, 2017, 14, 436-441.	3.1	27
14	Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana. Data in Brief, 2017, 15, 642-647.	1.0	12
15	Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote. Developmental Biology, 2017, 431, 145-151.	2.0	47
16	Transcriptional responses of ecologically diverse Drosophila species to larval diets differing in relative sugar and protein ratios. PLoS ONE, 2017, 12, e0183007.	2.5	14
17	Improving microRNA target prediction with gene expression profiles. BMC Genomics, 2016, 17, 364.	2.8	22
18	The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle. Scientific Reports, 2016, 6, 37536.	3.3	25

CEI ABREU-GOODGER

#	Article	IF	CITATIONS
19	Genome Evolution in Three Species of Cactophilic <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2016, 6, 3097-3105.	1.8	30
20	The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p. Genome Medicine, 2016, 8, 63.	8.2	35
21	High-Throughput Profiling of Caenorhabditis elegans Starvation-Responsive microRNAs. PLoS ONE, 2015, 10, e0142262.	2.5	16
22	The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family. Frontiers in Plant Science, 2015, 6, 341.	3.6	51
23	Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6754-6759.	7.1	99
24	Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nature Communications, 2014, 5, 5488.	12.8	640
25	Global Analyses of the Effect of Different Cellular Contexts on MicroRNA Targeting. Molecular Cell, 2014, 53, 1031-1043.	9.7	276
26	The miR-155–PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation. Journal of Experimental Medicine, 2014, 211, 2183-2198.	8.5	83
27	A Practical Guide to Sequencing Genomes and Transcriptomes. Current Topics in Medicinal Chemistry, 2014, 14, 398-406.	2.1	10
28	Kraken: A set of tools for quality control and analysis of high-throughput sequence data. Methods, 2013, 63, 41-49.	3.8	346
29	The <scp>RNAi</scp> machinery regulates growth and development in the filamentous fungus <i><scp>T</scp>richoderma atroviride</i> . Molecular Microbiology, 2013, 89, 96-112.	2.5	88
30	Enhanced Susceptibility to Citrobacter rodentium Infection in MicroRNA-155-Deficient Mice. Infection and Immunity, 2013, 81, 723-732.	2.2	35
31	Identification of Male Gametogenesis Expressed Genes from the Scallop Nodipecten subnodosus by Suppressive Subtraction Hybridization and Pyrosequencing. PLoS ONE, 2013, 8, e73176.	2.5	35
32	microRNA-22 Promotes Heart Failure through Coordinate Suppression of PPAR/ERR-Nuclear Hormone Receptor Transcription. PLoS ONE, 2013, 8, e75882.	2.5	72
33	Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue. PLoS Genetics, 2012, 8, e1002704.	3.5	48
34	Post-developmental microRNA expression is required for normal physiology, and regulates aging in parallel to insulin/IGF-1 signaling in <i>C. elegans</i> . Rna, 2012, 18, 2220-2235.	3.5	48
35	MiR-25 Regulates Wwp2 and Fbxw7 and Promotes Reprogramming of Mouse Fibroblast Cells to iPSCs. PLoS ONE, 2012, 7, e40938.	2.5	65
36	miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones. Nature Neuroscience, 2012, 15, 29-38.	14.8	107

CEI ABREU-GOODGER

#	Article	IF	CITATIONS
37	Large-Scale Identification of MicroRNA Targets in Murine Dgcr8-Deficient Embryonic Stem Cell Lines. PLoS ONE, 2012, 7, e41762.	2.5	8
38	Targeted Deletion of MicroRNA-22 Promotes Stress-Induced Cardiac Dilation and Contractile Dysfunction. Circulation, 2012, 125, 2751-2761.	1.6	161
39	Using MCL to Extract Clusters from Networks. Methods in Molecular Biology, 2012, 804, 281-295.	0.9	374
40	The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature, 2011, 480, 259-263.	27.8	285
41	Messenger RNA and microRNA profiling during early mouse EB formation. Gene Expression Patterns, 2011, 11, 334-344.	0.8	17
42	Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Research, 2011, 39, 808-824.	14.5	70
43	Malignant Germ Cell Tumors Display Common MicroRNA Profiles Resulting in Global Changes in Expression of Messenger RNA Targets. Cancer Research, 2010, 70, 2911-2923.	0.9	243
44	Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Research, 2010, 38, 4466-4475.	14.5	195
45	Combined agonist–antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13830-13835.	7.1	96
46	The miR-144/451 locus is required for erythroid homeostasis. Journal of Experimental Medicine, 2010, 207, 1351-1358.	8.5	277
47	Abstract 3424: Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of mRNA targets. , 2010, , .		0
48	Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes and Development, 2009, 23, 619-632.	5.9	149
49	An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nature Genetics, 2009, 41, 614-618.	21.4	281
50	Detecting microRNA binding and siRNA off-target effects from expression data. Nature Methods, 2008, 5, 1023-1025.	19.0	248
51	GeConT 2: gene context analysis for orthologous proteins, conserved domains and metabolic pathways. Nucleic Acids Research, 2008, 36, W176-W180.	14.5	51
52	RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Research, 2007, 36, D120-D124.	14.5	395
53	A Complete Set of Flagellar Genes Acquired by Horizontal Transfer Coexists with the Endogenous Flagellar System in Rhodobacter sphaeroides. Journal of Bacteriology, 2007, 189, 3208-3216.	2.2	73
54	Diminished Redundancy of Outer Membrane Factor Proteins in Rhizobiales: A <i>nodT</i> Homolog Is Essential for Free-Living <i>Rhizobium etli</i> . Journal of Molecular Microbiology and Biotechnology, 2007, 13, 22-34.	1.0	13

#	Article	IF	CITATIONS
55	microRNA-155 Regulates the Generation of Immunoglobulin Class-Switched Plasma Cells. Immunity, 2007, 27, 847-859.	14.3	724
56	RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements. Nucleic Acids Research, 2005, 33, W690-W692.	14.5	137
57	GeConT: gene context analysis. Bioinformatics, 2004, 20, 2307-2308.	4.1	59
58	Conserved regulatory motifs in bacteria: riboswitches and beyond. Trends in Genetics, 2004, 20, 475-479.	6.7	28
59	Conservation of DNA curvature signals in regulatory regions of prokaryotic genes. Nucleic Acids Research, 2003, 31, 6770-6777.	14.5	54