Weilin Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1582319/publications.pdf

Version: 2024-02-01

		186265	189892
146	3,168	28	50
papers	citations	h-index	g-index
147	147	147	3091
147	147	14/	3091
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Behavior of helium cavities in ion-irradiated W-Ni-Fe ductile-phase toughened tungsten. Journal of Nuclear Materials, 2022, 561, 153565.	2.7	6
2	Hardness variation in nanocrystalline SiC irradiated with heavy ions. Ceramics International, 2022, 48, 17846-17851.	4.8	9
3	Microstructural evolution and precipitation in \hat{I}^3 -LiAlO2 during ion irradiation. Journal of Applied Physics, 2022, 131, .	2.5	6
4	Formation of multicomponent alloy particles in doped ceria under I2+ ion irradiation and thermal annealing. Journal of Nuclear Materials, 2021, 545, 152638.	2.7	0
5	Amorphization resistance of nanocrystalline 3C-SiC implanted with H2+ ions. Nuclear Instruments & Methods in Physics Research B, 2021, 493, 9-14.	1.4	1
6	Percolation of Ion-Irradiation-Induced Disorder in Complex Oxide Interfaces. Nano Letters, 2021, 21, 5353-5359.	9.1	6
7	Dose rate effects on damage accumulation and void growth in self-ion irradiated tungsten. Journal of Nuclear Materials, 2021, 550, 152905.	2.7	12
8	Evidence of lithium mobility under neutron irradiation. Journal of Materials Research and Technology, 2021, 14, 475-483.	5.8	4
9	Temperature dependence of irradiation-induced nanocrystallization in amorphous silicon carbide. Nuclear Instruments & Methods in Physics Research B, 2021, 507, 1-6.	1.4	2
10	Energy-Dispersive X-ray Spectroscopy and Atom-probe Tomography Data Quantifying Component-Ratios of Multicomponent Nano-Precipitates in Ion-Irradiated Ceria. Data in Brief, 2021, 39, 107460.	1.0	0
11	Theoretical study of the electronic, thermodynamic, and thermo-conductive properties of \hat{I}^3 -LiAlO2 with 6Li isotope substitutions for tritium production. Journal of Nuclear Materials, 2020, 530, 151963.	2.7	11
12	Carbonaceous deposits on aluminide coatings in tritium-producing assemblies. Nuclear Materials and Energy, 2020, 25, 100797.	1.3	2
13	A quantitative study of retention and release of deuterium and tritium during irradiation of \hat{I}^3 -LiAlO2 pellets. Journal of Nuclear Materials, 2020, 542, 152532.	2.7	8
14	Deuterium diffusion in \hat{I}^3 -LiAlO2 pellets irradiated with He+ and D2+ ions. Journal of Nuclear Materials, 2020, 538, 152357.	2.7	5
15	Grain size variation in nanocrystalline silicon carbide irradiated at elevated temperatures. Journal of the American Ceramic Society, 2019, 102, 448-455.	3.8	4
16	Atomic-Scale Mechanisms for Interfacial Radiation Damage Resistance of Thin Film Oxide Heterostructures. Microscopy and Microanalysis, 2019, 25, 1562-1563.	0.4	0
17	lon irradiation induced changes in defects of iron thin films: Electron microscopy and positron annihilation spectroscopy. Journal of Nuclear Materials, 2019, 526, 151774.	2.7	6
18	Hexagonal close-packed high-entropy alloy formation under extreme processing conditions. Journal of Materials Research, 2019, 34, 709-719.	2.6	7

#	Article	IF	CITATIONS
19	Raman study of amorphization in nanocrystalline 3C–SiC irradiated with C ⁺ and He ⁺ ions. Journal of Raman Spectroscopy, 2019, 50, 1197-1204.	2.5	21
20	In Situ Study of Particle Precipitation in Metal-Doped CeO ₂ during Thermal Treatment and Ion Irradiation for Emulation of Irradiating Fuels. Journal of Physical Chemistry C, 2019, 123, 2591-2601.	3.1	16
21	Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures. Journal of Nuclear Materials, 2018, 505, 249-254.	2.7	19
22	Thermal annealing behavior of hydrogen and surface topography of H2+ ion implanted tungsten. Journal of Nuclear Science and Technology, 2018, 55, 703-708.	1.3	5
23	Precipitates and voids in cubic silicon carbide implanted with 25Mg+ ions. Journal of Nuclear Materials, 2018, 498, 321-331.	2.7	7
24	Formation of bubbles and blisters in hydrogen ion implanted polycrystalline tungsten. Radiation Effects and Defects in Solids, 2018, 173, 1027-1036.	1.2	4
25	Chemical imaging and diffusion of hydrogen and lithium in lithium aluminate. Journal of Nuclear Materials, 2018, 511, 1-10.	2.7	19
26	Irradiation effects and hydrogen behavior in H2+ and He+ implanted \hat{I}^3 -LiAlO2 single crystals. Journal of Nuclear Materials, 2017, 484, 374-381.	2.7	29
27	Nanoparticle Precipitation in Irradiated and Annealed Ceria Doped with Metals for Emulation of Spent Fuels. Journal of Physical Chemistry C, 2017, 121, 22465-22477.	3.1	6
28	Nanostructural evolution and behavior of H and Li in ion-implanted \hat{I}^3 -LiAlO2. Journal of Nuclear Materials, 2017, 494, 411-421.	2.7	23
29	Microstructural response of InGaN to swift heavy ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2016, 388, 30-34.	1.4	8
30	Lattice damage and compositional changes in Xe ion irradiated In <i>x</i> Ga1- <i>x</i> N (<i>x</i> =) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf !
31	Vacancy effects on the formation of He and Kr cavities in 3C-SiC irradiated and annealed at elevated temperatures. Nuclear Instruments & Methods in Physics Research B, 2016, 389-390, 40-47.	1.4	17
32	Grain growth of nanocrystalline 3C-SiC under Au ion irradiation at elevated temperatures. Journal Physics D: Applied Physics, 2016, 49, 035304.	2.8	3
33	Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Journal of Nuclear Materials, 2015, 458, 146-155.	2.7	13
34	Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2. Journal of Nuclear Materials, 2015, 462, 310-320.	2.7	19
35	Electrical and Magnetic Properties Modification in Heavy Ion Irradiated Nanograin Ni _{<i>x</i>} Co _(3–<i>x</i>) O ₄ Films. Journal of Physical Chemistry C, 2015, 119, 22465-22476.	3.1	14
36	Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling. Journal of Magnetism and Magnetic Materials, 2015, 395, 361-375.	2.3	57

#	Article	IF	CITATIONS
37	Oxide shell reduction and magnetic property changes in core-shell Fe nanoclusters under ion irradiation. Journal of Applied Physics, 2014, 115, 17B507.	2.5	7
38	Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition. Journal of Applied Physics, $2014,116,116$	2.5	5
39	In Situ Study of Nanostructure and Electrical Resistance of Nanocluster Films Irradiated with Ion Beams. Advanced Functional Materials, 2014, 24, 6210-6218.	14.9	14
40	Magnetization Measurements and XMCD Studies on Ion Irradiated Iron Oxide and Core-Shell Iron/Iron-Oxide Nanomaterials. IEEE Transactions on Magnetics, 2014, 50, 1-5.	2.1	9
41	Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F ⁺ lons. Journal of Physical Chemistry C, 2014, 118, 18160-18169.	3.1	7
42	Thermodynamic and kinetic properties of intrinsic defects and Mg transmutants in 3C–SiC determined by density functional theory. Journal of Nuclear Materials, 2014, 448, 121-128.	2.7	11
43	Characterization of defects in n-type 4H-SiC after high-energy N ion implantation by RBS-channeling and Raman spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2014, 332, 28-32.	1.4	2
44	lon tracks and microstructures in barium titanate irradiated with swift heavy ions: A combined experimental and computational study. Acta Materialia, 2013, 61, 7904-7916.	7.9	18
45	Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel. Nano Energy, 2013, 2, 124-132.	16.0	29
46	RBS/C, HRTEM and HRXRD study of damage accumulation in irradiated SrTiO3. Radiation Effects and Defects in Solids, 2013, 168, 442-449.	1.2	3
47	Structure and magnetic properties of irradiated Fe-Fe oxide core-shell nanoclusters. AIP Conference Proceedings, 2013, , .	0.4	3
48	lon irradiation of Fe-Fe oxide core-shell nanocluster films: Effect of interface on stability of magnetic properties. Journal of Applied Physics, 2013, 114, .	2.5	13
49	Analysis of Crystal Lattice Deformation by Ion Channeling. Acta Physica Polonica A, 2013, 123, 828-830.	0.5	10
50	Size Dependence of Inter- and Intracluster Interactions in Core–Shell Iron–Iron Oxide Nanoclusters. Journal of Physical Chemistry C, 2012, 116, 12875-12885.	3.1	55
51	Interstitial and substitutional zirconium in SrTiO3. Computational Materials Science, 2012, 53, 153-157.	3.0	7
52	Magnetic behavior of Ni and Co doped CuMn2O4 spinels. Journal of Applied Physics, 2012, 111, .	2.5	17
53	Selective Plasmonic Gas Sensing: H ₂ , NO ₂ , and CO Spectral Discrimination by a Single Au-CeO ₂ Nanocomposite Film. Analytical Chemistry, 2012, 84, 5025-5034.	6.5	102
54	Superlattice Structure and Precipitates in O+ and Zr+ Ion Coimplanted SrTiO3: A Model Waste Form for 90Sr. Journal of Physical Chemistry C, 2012, 116, 16709-16715.	3.1	6

#	Article	IF	Citations
55	Defects and Minor Phases in O+and Zr+lon Co-implanted SrTiO3. Industrial & Defects amp; Engineering Chemistry Research, 2012, 51, 621-628.	3.7	9
56	Flexible Pillared Grapheneâ€Paper Electrodes for Highâ€Performance Electrochemical Supercapacitors. Small, 2012, 8, 452-459	10.0	297
57	display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mrow>a^'<mml:mi></mml:mi></mml:mrow></mml:msub> <mml:msub><mml:mrow></mml:mrow><mml:mi>x</mml:mi>x></mml:msub> O <mml:math td="" <=""><td>> 3.2</td><td>ath>Ti<mm 15</mm </td></mml:math>	> 3.2	ath>Ti <mm 15</mm
58	Thickness Dependency of Thin-Film Samaria-Doped Ceria for Oxygen Sensing. IEEE Sensors Journal, 2011, 11, 217-224.	4.7	14
59	Influence of growth rate on the epitaxial orientation and crystalline quality of CeO2 thin films grown on Al2O3(0001). Journal of Applied Physics, 2011, 109, .	2.5	23
60	Transition from Irradiationâ€Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide. Journal of the American Ceramic Society, 2011, 94, 4127-4130.	3.8	25
61	Magnetization and susceptibility of ion-irradiated granular magnetite films. Physical Review B, 2011, 83,	3.2	19
62	Magnetic stability of He+ion irradiated FeO+Fe3N granular films. Journal of Applied Physics, 2011, 109, 07E324.	2.5	4
63	Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: A combined experimental and theoretical modeling study. Journal of Catalysis, 2010, 271, 325-342.	6.2	174
64	Integrated experimental and modeling study of ionic conductivity of scandia-stabilized zirconia thin films. Solid State Ionics, 2010, 181, 367-371.	2.7	9
65	Amorphization of nanocrystalline 3C-SiC irradiated with Si ⁺ ions. Journal of Materials Research, 2010, 25, 2341-2348.	2.6	40
66	Damage and microstructure evolution in GaN under Au ion irradiation. Journal Physics D: Applied Physics, 2010, 43, 085303.	2.8	41
67	Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation. Physical Review B, 2010, 82, .	3.2	115
68	Thermal evolution of microstructure in ion-irradiated GaN. Journal of Applied Physics, 2009, 105, 083514.	2.5	21
69	Response of nanocrystalline <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>C</mml:mi></mml:mrow></mml:math> silicon carbide to heavy-ion irradiation. Physical Review B, 2009, 80, .	3.2	66
70	Growth-rate induced epitaxial orientation of CeO2 on Al2O3(0001). Applied Physics Letters, 2009, 94, 204101.	3.3	14
71	Disorder accumulation and recovery in gold-ion irradiated 3C-SiC. Journal of Applied Physics, 2009, 105, 013529.	2.5	18
72	Morphology, orientation relationship, and stability analysis of Cu2O nanoclusters on SrTiO3 (100). Applied Physics Letters, 2009, 95, 053111.	3.3	7

#	Article	IF	CITATIONS
73	Fe-Al interface intermixing and the role of Ti, V, and Zr as a stabilizing interlayer at the interface. Journal of Applied Physics, 2009, 105, 053504.	2.5	7
74	Damage profile and ion distribution of slow heavy ions in compounds. Journal of Applied Physics, 2009, 105, .	2.5	85
75	Performance Evaluation of an Oxygen Sensor as a Function of the Samaria Doped Ceria Film Thickness. Materials Research Society Symposia Proceedings, 2009, 1209, 1.	0.1	1
76	Anisotropy of disorder accumulation and recovery in 6H–SiC irradiated with Au2+ ions at 140K. Journal of Nuclear Materials, 2009, 389, 332-335.	2.7	4
77	Influence of samaria doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Sensors and Actuators B: Chemical, 2009, 139, 380-386.	7.8	26
78	Growth and Characterization of Barium Oxide Nanoclusters on YSZ(111). Journal of Physical Chemistry C, 2009, 113, 14324-14328.	3.1	15
79	Microstructure of ion-irradiated GaN and its thermal evolution. Microscopy and Microanalysis, 2009, 15, 1364-1365.	0.4	0
80	Effects of dynamic recovery on amorphization kinetics in 6H-SiC. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2793-2796.	1.4	35
81	Self-assembly of well-aligned 3C-SiC ripples by focused ion beam. Applied Physics Letters, 2008, 92, .	3.3	13
82	On Modeling the Evolution of Radiation Damage in Silicon Carbide. Materials Research Society Symposia Proceedings, 2007, 1043, 1.	0.1	0
83	Variation in lattice parameters of 6H-SiC irradiated to extremely low doses. Applied Physics Letters, 2007, 91, .	3.3	18
84	Behavior of Si and C atoms in ion amorphized SiC. Journal of Applied Physics, 2007, 101, 023524.	2.5	26
85	Disordering and dopant behaviour in Au ⁺ -ion-irradiated AlN. Journal of Physics Condensed Matter, 2007, 19, 356207.	1.8	18
86	Direct evidence of N aggregation and diffusion in Au+ irradiated GaN. Applied Physics Letters, 2006, 89, 021903.	3.3	34
87	Radiation-induced effects in pyrochlores and nanoscale materials engineering. Nuclear Instruments & Methods in Physics Research B, 2006, 250, 128-136.	1.4	41
88	Effect of irradiation temperature on dynamic recovery in gallium nitride. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 431-433.	1.4	5
89	Irradiation-induced nanostructures in cadmium niobate pyrochlores. Nuclear Instruments & Methods in Physics Research B, 2006, 250, 188-191.	1.4	3
90	Hydrogen behavior in Mg+-implanted graphite. Journal of Materials Research, 2006, 21, 811-815.	2.6	1

#	Article	IF	Citations
91	Temperature response of C13 atoms in amorphized 6H–SiC. Applied Physics Letters, 2006, 89, 261902.	3.3	4
92	Accumulation and recovery of disorder in Au2+-irradiated Cd2Nb2O7. Nuclear Instruments & Methods in Physics Research B, 2005, 241, 372-376.	1.4	1
93	Cadmium Nanowire Formation Induced by Ion Irradiation. Advanced Materials, 2005, 17, 1602-1606.	21.0	25
94	Nitrogen analysis using energetic ion beams. Surface and Interface Analysis, 2005, 37, 374-378.	1.8	7
95	Studies of Damage Accumulation in 4H Silicon Carbide by Ion-Channeling Techniques. Materials Science Forum, 2005, 475-479, 1341-1344.	0.3	1
96	Defects and Ion-Solid Interactions in Silicon Carbide. Materials Science Forum, 2005, 475-479, 1345-1350.	0.3	0
97	Ion-induced damage accumulation and electron-beam-enhanced recrystallization inSrTiO3. Physical Review B, 2005, 72, .	3.2	103
98	Direct determination of volume changes in ion-beam-irradiated SiC. Journal of Applied Physics, 2004, 95, 4687-4690.	2.5	32
99	Effects of implantation temperature on damage accumulation in Al-implanted 4H–SiC. Journal of Applied Physics, 2004, 95, 4012-4018.	2.5	89
100	Temperature dependence of disorder accumulation and amorphization in Au-ion-irradiated6Hâ^'SiC. Physical Review B, 2004, 70, .	3.2	88
101	Damage accumulation and defect relaxation in4Hâ^'SiC. Physical Review B, 2004, 70, .	3.2	33
102	Experimental Studies of Defects, Implants and their Processes in Ion-Irradiated Gallium Nitride Single Crystals. Defect and Diffusion Forum, 2004, 226-228, 91-112.	0.4	20
103	lon-beam synthesis of epitaxial Au nanocrystals in MgO. Journal of Materials Research, 2004, 19, 1311-1314.	2.6	2
104	Ion-beam induced defects and nanoscale amorphous clusters in silicon carbide. Nuclear Instruments & Methods in Physics Research B, 2004, 216, 25-35.	1.4	35
105	The efficiency of damage production in silicon carbide. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 68-73.	1.4	28
106	Amorphization processes in Au ion irradiated GaN at 150–300 K. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 427-432.	1.4	29
107	NRA and ERDA investigation of helium retention in SiC as a function of irradiation and annealing. Nuclear Instruments & Methods in Physics Research B, 2004, 219-220, 631-635.	1.4	6
108	Thermal and dynamic responses of Ag implants in silicon carbide. Nuclear Instruments & Methods in Physics Research B, 2004, 219-220, 642-646.	1.4	20

#	Article	IF	Citations
109	Annealing behavior of Al-implantation-induced disorder in 4H–SiC. Nuclear Instruments & Methods in Physics Research B, 2004, 219-220, 647-651.	1.4	4
110	Carbon analysis using energetic ion beams. Nuclear Instruments & Methods in Physics Research B, 2004, 222, 538-546.	1.4	14
111	Effect of ion irradiation in cadmium niobate pyrochlores. Nuclear Instruments & Methods in Physics Research B, 2003, 207, 85-91.	1.4	5
112	Ion beam analysis of irradiation effects in 6H–SiC. Nuclear Instruments & Methods in Physics Research B, 2003, 207, 92-99.	1.4	26
113	Fundamental nature of ion–solid interactions in SiC. Nuclear Instruments & Methods in Physics Research B, 2003, 206, 1-6.	1.4	13
114	Accumulation of ion beam induced disorder in strontium titanate. Nuclear Instruments & Methods in Physics Research B, 2003, 206, 162-165.	1.4	7
115	Ion-beam-irradiation induced defects in gallium nitride. Nuclear Instruments & Methods in Physics Research B, 2003, 206, 1037-1041.	1.4	7
116	Oxygen analysis using energetic ion beams. Nuclear Instruments & Methods in Physics Research B, 2003, 207, 453-461.	1.4	10
117	Microstructure of precipitated Au nanoclusters in MgO. Journal of Applied Physics, 2003, 93, 6327-6333.	2.5	24
118	Experimental and Computational Studies of Ion-Solid Interactions in Silicon Carbide. Materials Research Society Symposia Proceedings, 2003, 792, 39.	0.1	3
119	Effects of implantation temperature and ion flux on damage accumulation in Al-implanted 4H-SiC. Journal of Applied Physics, 2003, 93, 1954-1960.	2.5	54
120	Irradiation-induced recovery of disorder in gallium nitride. Applied Physics Letters, 2003, 83, 458-460.	3.3	15
121	Damage evolution and recovery on both Si and C sublattices in Al-implanted 4H–SiC studied by Rutherford backscattering spectroscopy and nuclear reaction analysis. Journal of Applied Physics, 2002, 91, 6388.	2.5	91
122	Irradiation-induced formation of nanoparticles in cadmium niobate pyrochlore. Applied Physics Letters, 2002, 80, 670-672.	3.3	10
123	Experimental and Computer Simulation Studies of Defects and Ion-Solid Interactions in Silicon Carbide. Materials Science Forum, 2002, 389-393, 875-878.	0.3	1
124	Damage Evolution and Recovery in Al-Implanted 4H-SiC. Materials Science Forum, 2002, 389-393, 815-818.	0.3	5
125	lon–solid interactions and defects in silicon carbide. Nuclear Instruments & Methods in Physics Research B, 2002, 190, 261-265.	1.4	7
126	Deuterium channeling study of disorder in Al22+-implanted 6H-SiC. Nuclear Instruments & Methods in Physics Research B, 2002, 190, 636-640.	1.4	5

#	Article	IF	Citations
127	Channeling study of lattice disorder and gold implants in gallium nitride. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 509-513.	1.4	9
128	Damage evolution and recovery in 4H and 6H silicon carbide irradiated with aluminum ions. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 514-518.	1.4	5
129	Evolution and recrystallization of buried amorphous layers in Al22+ implanted 4H-SiC. Nuclear Instruments & Methods in Physics Research B, 2002, 195, 320-328.	1.4	9
130	Cleaving oxide films using hydrogen implantation. Materials Letters, 2001, 49, 313-317.	2.6	11
131	Accumulation and recovery of disorder on silicon and carbon sublattices in ion-irradiated 6H–SiC. Journal of Nuclear Materials, 2001, 289, 96-101.	2.7	46
132	Accumulation and thermal recovery of disorder in Au2+-irradiated SrTiO3. Journal of Nuclear Materials, 2001, 289, 204-209.	2.7	18
133	Ion implantation and thermal annealing in silicon carbide and gallium nitride. Nuclear Instruments & Methods in Physics Research B, 2001, 178, 204-208.	1.4	7
134	Accumulation, dynamic annealing and thermal recovery of ion-beam-induced disorder in silicon carbide. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 26-30.	1.4	52
135	Damage accumulation and recovery in gold-ion-irradiated barium titanate. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 610-614.	1.4	7
136	Deuterium channeling analysis for He+-implanted 6H–SiC. Nuclear Instruments & Methods in Physics Research B, 2000, 161-163, 501-504.	1.4	27
137	Ion beam analysis of interface reactions in magnetite and maghemite thin films. Nuclear Instruments & Methods in Physics Research B, 2000, 161-163, 510-514.	1.4	7
138	Investigation of thermal recovery behavior in hydrogen-implanted SrTiO3 using high energy ion beam techniques. Nuclear Instruments & Methods in Physics Research B, 2000, 161-163, 544-548.	1.4	7
139	Defect annealing kinetics in irradiated 6H–SiC. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 410-414.	1.4	33
140	Irradiation effects and thermal annealing behavior in H2+-implanted 6H–SiC. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 374-378.	1.4	25
141	In situion channeling study of gallium disorder and gold profiles in Au-implanted GaN. Journal of Applied Physics, 2000, 87, 7671-7678.	2.5	51
142	Ion-Channeling Studies of Interfaces and Defect Properties in Silicon Carbide. Materials Science Forum, 2000, 338-342, 957-960.	0.3	4
143	The ion beam materials analysis laboratory at the environmental molecular sciences laboratory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 420, 81-89.	1.6	64
144	Dependence of the silicon detector response to heavy ions on the direction of incidence. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 419, 137-145.	1.6	8

#	Article	lF	CITATIONS
145	Oxygen analyses in high-Tc superconducting films by MeV proton elastic backscattering. Nuclear Instruments & Methods in Physics Research B, 1993, 83, 552-556.	1.4	2
146	A new method for profiling boron. Nuclear Instruments & Methods in Physics Research B, 1989, 43, 565-569.	1.4	4