Sean M Mcmahon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1582240/publications.pdf

Version: 2024-02-01

43 papers

4,227 citations

201575 27 h-index 254106 43 g-index

47 all docs

47
docs citations

47 times ranked

7069 citing authors

#	Article	IF	CITATIONS
1	Joint effects of climate, tree size, and year on annual tree growth derived from treeâ€ring records of ten globally distributed forests. Global Change Biology, 2022, 28, 245-266.	4.2	46
2	Individual tree damage dominates mortality risk factors across six tropical forests. New Phytologist, 2022, 233, 705-721.	3.5	18
3	Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Global Change Biology, 2022, 28, 1414-1432.	4.2	16
4	<i>allodb</i> : An R package for biomass estimation at globally distributed extratropical forest plots. Methods in Ecology and Evolution, 2022, 13, 330-338.	2,2	11
5	Demographic composition, not demographic diversity, predicts biomass and turnover across temperate and tropical forests. Global Change Biology, 2022, 28, 2895-2909.	4.2	8
6	Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist, 2022, 234, 1664-1677.	3.5	24
7	Tropical tree mortality has increased with rising atmospheric water stress. Nature, 2022, 608, 528-533.	13.7	74
8	Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO ₂ . New Phytologist, 2021, 229, 2413-2445.	3.5	286
9	The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology and Evolution, 2021, 5, 174-183.	3.4	27
10	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
11	Leaf turgor loss point shapes local and regional distributions of evergreen but not deciduous tropical trees. New Phytologist, 2021, 230, 485-496.	3.5	30
12	Closing the life cycle of forest trees: The difficult dynamics of seedlingâ€toâ€sapling transitions in a subtropical rainforest. Journal of Ecology, 2021, 109, 2705-2716.	1.9	14
13	Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.	5.8	28
14	Hydraulicallyâ€vulnerable trees survive on deepâ€water access during droughts in a tropical forest. New Phytologist, 2021, 231, 1798-1813.	3.5	51
15	Forecasting species range dynamics with processâ€explicit models: matching methods to applications. Ecology Letters, 2019, 22, 1940-1956.	3.0	144
16	Cryptic phenology in plants: Case studies, implications, and recommendations. Global Change Biology, 2019, 25, 3591-3608.	4.2	26
17	Drought and the interannual variability of stem growth in an aseasonal, everwet forest. Biotropica, 2019, 51, 139-154.	0.8	7
18	The importance and challenges of detecting changes in forest mortality rates. Ecosphere, 2019, 10, e02615.	1.0	39

#	Article	IF	CITATIONS
19	Seasonal and droughtâ€related changes in leaf area profiles depend on height and light environment in an Amazon forest. New Phytologist, 2019, 222, 1284-1297.	3.5	64
20	Inferring forest fate from demographic data: from vital rates to population dynamic models. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172050.	1.2	31
21	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	3.5	341
22	The roots of the drought: Hydrology and water uptake strategies mediate forestâ€wide demographic response to precipitation. Journal of Ecology, 2018, 106, 1495-1507.	1.9	53
23	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	6
24	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	9
25	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	2.7	330
26	Climate sensitive size-dependent survival in tropical trees. Nature Ecology and Evolution, 2018, 2, 1436-1442.	3.4	41
27	Plant diversity increases with the strength of negative density dependence at the global scale. Science, 2017, 356, 1389-1392.	6.0	222
28	Tree Circumference Dynamics in Four Forests Characterized Using Automated Dendrometer Bands. PLoS ONE, 2016, 11, e0169020.	1.1	25
29	Forest community response to invasive pathogens: the case of ash dieback in a British woodland. Journal of Ecology, 2016, 104, 315-330.	1.9	38
30	Towards Process-based Range Modeling of Many Species. Trends in Ecology and Evolution, 2016, 31, 860-871.	4.2	123
31	A general model of intraâ€annual tree growth using dendrometer bands. Ecology and Evolution, 2015, 5, 243-254.	0.8	39
32	Sizeâ€related scaling of tree form and function in a mixedâ€age forest. Functional Ecology, 2015, 29, 1587-1602.	1.7	39
33	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473
34	Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution, 2014, 5, 99-110.	2.2	231
35	On using integral projection models to generate demographically driven predictions of species' distributions: development and validation using sparse data. Ecography, 2014, 37, 1167-1183.	2.1	121
36	<i><scp>IPM</scp>pack</i> : an <scp>R</scp> package for integral projection models. Methods in Ecology and Evolution, 2013, 4, 195-200.	2.2	93

#	Article	IF	CITATIONS
37	Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecology Letters, 2012, 15, 1406-1414.	3.0	180
38	Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends in Ecology and Evolution, 2011, 26, 249-259.	4.2	268
39	Demography and biomass change in monodominant and mixed old-growth forest of the Congo. Journal of Tropical Ecology, 2011, 27, 447-461.	0.5	30
40	High-Dimensional Coexistence of Temperate Tree Species: Functional Traits, Demographic Rates, Life-History Stages, and Their Physical Context. PLoS ONE, 2011, 6, e16253.	1.1	19
41	Highâ€dimensional coexistence based on individual variation: a synthesis of evidence. Ecological Monographs, 2010, 80, 569-608.	2.4	141
42	Evidence for a recent increase in forest growth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3611-3615.	3.3	318
43	A Predictive Framework to Understand Forest Responses to Global Change. Annals of the New York Academy of Sciences, 2009, 1162, 221-236.	1.8	20