
Ying-Jie Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1582159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of Sympathetic Nervous System Contributes to Erthroprotein Gene Upregulation by Hypobaric Hypoxia. FASEB Journal, 2022, 36, .	0.2	0
2	Carotid body responses to <scp>O₂</scp> and <scp>CO₂</scp> in hypoxiaâ€ŧolerant naked mole rats. Acta Physiologica, 2022, 236, .	1.8	6
3	Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. Journal of Neurophysiology, 2021, 125, 2054-2067.	0.9	13
4	Olfactory receptor 78 regulates erythropoietin and cardiorespiratory responses to hypobaric hypoxia. Journal of Applied Physiology, 2021, 130, 1122-1132.	1.2	6
5	Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. Journal of Neurophysiology, 2021, 125, 1533-1542.	0.9	5
6	Histone Deacetylase 5 Is an Early Epigenetic Regulator of Intermittent Hypoxia Induced Sympathetic Nerve Activation and Blood Pressure. Frontiers in Physiology, 2021, 12, 688322.	1.3	10
7	Intermittent Hypoxia-Induced Activation of Endothelial Cells Is Mediated via Sympathetic Activation-Dependent Catecholamine Release. Frontiers in Physiology, 2021, 12, 701995.	1.3	5
8	Olfactory receptor 78 participates in carotid body response to a wide range of low O ₂ levels but not severe hypoxia. Journal of Neurophysiology, 2020, 123, 1886-1895.	0.9	21
9	Hypoxia-inducible factors and obstructive sleep apnea. Journal of Clinical Investigation, 2020, 130, 5042-5051.	3.9	135
10	H2S mediates carotid body response to hypoxia but not anoxia. Respiratory Physiology and Neurobiology, 2019, 259, 75-85.	0.7	14
11	Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. Journal of Neurophysiology, 2019, 122, 1874-1883.	0.9	4
12	Neural activation of molecular circuitry in intermittent hypoxia. Current Opinion in Physiology, 2019, 7, 9-14.	0.9	10
13	Impaired Acute Hypoxic Sensing in Olfactory Receptor 78 Knockout Mice. FASEB Journal, 2019, 33, lb575.	0.2	0
14	H 2 S Contributes to Carotid Body Response to Hypoxia but Not Anoxia. FASEB Journal, 2019, 33, 551.14.	0.2	0
15	Phrenic Nerve and Carotid Body Responses to Hypoxia and CO 2 in Naked Mole Rats. FASEB Journal, 2019, 33, lb576.	0.2	Ο
16	H 2 S synthesis inhibitor prevents hypoxiaâ€evoked periodic breathing in spontaneous hypertensive rats. FASEB Journal, 2019, 33, lb577.	0.2	0
17	H 2 S synthesis inhibitor prevents hypoxiaâ€evoked periodic breathing in spontaneous hypertensive rats. FASEB Journal, 2019, 33, 551.17.	0.2	0
18	Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell and Tissue Research, 2018, 372, 427-431.	1.5	27

YING-JIE PENG

#	Article	IF	CITATIONS
19	DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. Journal of Physiology, 2018, 596, 3087-3100.	1.3	16
20	Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Research, 2018, 7, 1900.	0.8	22
21	Therapeutic Targeting of the Carotid Body for Treating Sleep Apnea in a Pre-clinical Mouse Model. Advances in Experimental Medicine and Biology, 2018, 1071, 109-114.	0.8	10
22	Measurement of Sensory Nerve Activity from the Carotid Body. Methods in Molecular Biology, 2018, 1742, 115-124.	0.4	1
23	Complementary roles of gasotransmitters CO and H ₂ S in sleep apnea. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1413-1418.	3.3	65
24	Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after longâ€ŧerm intermittent hypoxia. Journal of Physiology, 2017, 595, 63-77.	1.3	53
25	Oxygen Sensing by the Carotid Body: Past and Present. Advances in Experimental Medicine and Biology, 2017, 977, 3-8.	0.8	24
26	CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. Journal of Neurophysiology, 2016, 115, 345-354.	0.9	13
27	H ₂ S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea. Science Signaling, 2016, 9, ra80.	1.6	39
28	Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respiratory Physiology and Neurobiology, 2015, 209, 115-119.	0.7	10
29	Ca _V 3.2 T-type Ca ²⁺ channels in H ₂ S-mediated hypoxic response of the carotid body. American Journal of Physiology - Cell Physiology, 2015, 308, C146-C154.	2.1	18
30	Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. Journal of Molecular Medicine, 2015, 93, 473-480.	1.7	43
31	Protein kinase G–regulated production of H ₂ S governs oxygen sensing. Science Signaling, 2015, 8, ra37.	1.6	101
32	Peripheral Chemoreception and Arterial Pressure Responses to Intermittent Hypoxia. , 2015, 5, 561-577.		87
33	Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medulla. Advances in Experimental Medicine and Biology, 2015, 860, 195-199.	0.8	11
34	HIFâ€2α Deficiency Induces Carotid Body Sensory Longâ€Term Facilitation. FASEB Journal, 2015, 29, 682.3.	0.2	0
35	Protein Kinase G Regulated H 2 S Governs Oxygen Sensing by the Carotid Body. FASEB Journal, 2015, 29, 682.2.	0.2	0
36	Ca _v 3.2 Tâ€ŧype Ca ²⁺ Channels in H ₂ Sâ€Mediated Hypoxic Response of the Carotid Body. FASEB Journal, 2015, 29, 859.10.	0.2	0

Ying-Jie Peng

#	Article	IF	CITATIONS
37	Hypoxia-inducible factors regulate human and rat cystathionine β-synthase gene expression. Biochemical Journal, 2014, 458, 203-211.	1.7	36
38	Inherent variations in CO-H ₂ S-mediated carotid body O ₂ sensing mediate hypertension and pulmonary edema. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1174-1179.	3.3	71
39	Regulation of hypoxiaâ€inducible factorâ€Î± isoforms and redox state by carotid body neural activity in rats. Journal of Physiology, 2014, 592, 3841-3858.	1.3	75
40	Tâ€ŧype calcium channels in carotid body oxygen sensing (889.1). FASEB Journal, 2014, 28, 889.1.	0.2	0
41	Regulation of HIFâ€alpha isoform expression and redox state by carotid body chemosensory reflex (710.5). FASEB Journal, 2014, 28, 710.5.	0.2	0
42	Role of oxidative stressâ€induced endothelinâ€converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Experimental Physiology, 2013, 98, 1620-1630.	0.9	38
43	Central and peripheral factors contributing to obstructive sleep apneas. Respiratory Physiology and Neurobiology, 2013, 189, 344-353.	0.7	82
44	Mutual antagonism between hypoxia-inducible factors 1α and 2α regulates oxygen sensing and cardio-respiratory homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1788-96.	3.3	73
45	Role of Endothelinâ€1 in altered carotid body function by chronic intermittent hypoxia. FASEB Journal, 2013, 27, 938.11.	0.2	0
46	Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2515-2520.	3.3	120
47	Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. Journal of Applied Physiology, 2012, 112, 187-196.	1.2	43
48	Particulate Matter Induces Cardiac Arrhythmias via Dysregulation of Carotid Body Sensitivity and Cardiac Sodium Channels. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 524-531.	1.4	40
49	Sympatho-adrenal activation by chronic intermittent hypoxia. Journal of Applied Physiology, 2012, 113, 1304-1310.	1.2	85
50	Angiotensin II evokes sensory long-term facilitation of the carotid body via NADPH oxidase. Journal of Applied Physiology, 2011, 111, 964-970.	1.2	42
51	Hypoxia-inducible factor 2α (HIF-2α) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3065-3070.	3.3	104
52	H ₂ S mediates O ₂ sensing in the carotid body. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10719-10724.	3.3	344
53	Intermittent hypoxia degrades HIF-2α via calpains resulting in oxidative stress: Implications for recurrent apnea-induced morbidities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1199-1204.	3.3	163
54	Pattern-Specific Sustained Activation of Tyrosine Hydroxylase by Intermittent Hypoxia: Role of Reactive Oxygen Species-Dependent Downregulation of Protein Phosphatase 2A and Upregulation of Protein Kinases. Antioxidants and Redox Signaling, 2009, 11, 1777-1789.	2.5	33

YING-JIE PENG

#	Article	IF	CITATIONS
55	NADPH Oxidase Is Required for the Sensory Plasticity of the Carotid Body by Chronic Intermittent Hypoxia. Journal of Neuroscience, 2009, 29, 4903-4910.	1.7	168
56	Long-Term Regulation of Carotid Body Function: Acclimatization and Adaptation – Invited Article. Advances in Experimental Medicine and Biology, 2009, 648, 307-317.	0.8	27
57	HIFâ€2α downâ€regulation by intermittent hypoxia in rats induces oxidative stress resulting in autonomic dysfunction. FASEB Journal, 2009, 23, .	0.2	0
58	Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. Journal of Applied Physiology, 2008, 104, 1287-1294.	1.2	99
59	ROLE OF CAROTID BODIES IN CHRONIC INTERMITTENT HYPOXIAâ€EVOKED AUGMENTED LTF OF PHRENIC NERVE ACTIVITY. FASEB Journal, 2008, 22, 960.7.	0.2	1
60	ACTIVATION OF NADPHâ€OXIDASE BY 5â€HT MEDIATES SENSORY LTF OF THE CAROTID BODY BY CHRONIC INTERMITTENT HYPOXIA. FASEB Journal, 2008, 22, 960.8.	0.2	1
61	Altered carotid body function by intermittent hypoxia in neonates and adults: Relevance to recurrent apneas. Respiratory Physiology and Neurobiology, 2007, 157, 148-153.	0.7	63
62	Acute lung injury augments hypoxic ventilatory response in the absence of systemic hypoxemia. Journal of Applied Physiology, 2006, 101, 1795-1802.	1.2	39
63	Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. Journal of Physiology, 2006, 575, 229-239.	1.3	162
64	Heterozygous HIF-1Î \pm deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. Journal of Physiology, 2006, 577, 705-716.	1.3	339
65	5-HT evokes sensory long-term facilitation of rodent carotid body via activation of NADPH oxidase. Journal of Physiology, 2006, 576, 289-295.	1.3	73
66	Chronic intermittent hypoxia induces hypoxic sensitivity in adult rat adrenal medulla via oxidative stress. FASEB Journal, 2006, 20, A789.	0.2	0
67	Comparison between neonatal and adult carotid body responses to chronic intermittent hypoxia. FASEB Journal, 2006, 20, A789.	0.2	1
68	Reactive oxygen species facilitate oxygen sensing. Novartis Foundation Symposium, 2006, 272, 95-9; discussion 100-5, 131-40.	1.2	7
69	CARDIOVASCULAR ALTERATIONS BY CHRONIC INTERMITTENT HYPOXIA: IMPORTANCE OF CAROTID BODY CHEMOREFLEXES. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 447-449.	0.9	131
70	Kv1.1 Deletion Augments the Afferent Hypoxic Chemosensory Pathway and Respiration. Journal of Neuroscience, 2005, 25, 3389-3399.	1.7	37
71	Amino acids modulate the hypotensive effect of angiotensin-(1-7) at the caudal ventrolateral medulla in rats. Regulatory Peptides, 2005, 129, 1-7.	1.9	26
72	Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B. Respiratory Physiology and Neurobiology, 2005, 145, 23-31.	0.7	21

YING-JIE PENG

#	Article	IF	CITATIONS
73	Modulation of the hypoxic sensory response of the carotid body by 5-hydroxytryptamine: role of the 5-HT2 receptor. Respiratory Physiology and Neurobiology, 2005, 145, 135-142.	0.7	43
74	Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. Journal of Applied Physiology, 2004, 97, 2020-2025.	1.2	102
75	Detection of Oxygen Sensing During Intermittent Hypoxia. Methods in Enzymology, 2004, 381, 107-120.	0.4	6
76	Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. Journal of Applied Physiology, 2004, 96, 1236-1242.	1.2	201
77	Peripheral chemoreceptors in health and disease. Journal of Applied Physiology, 2004, 96, 359-366.	1.2	154
78	Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: Implications for recurrent apneas. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10073-10078.	3.3	395
79	Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia. Journal of Applied Physiology, 2003, 94, 2342-2349.	1.2	146
80	Systemic and Cellular Responses to Intermittent Hypoxia: Evidence for Oxidative Stress and Mitochondrial Dysfunction. Advances in Experimental Medicine and Biology, 2003, 536, 559-564.	0.8	42
81	Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1Â. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 821-826.	3.3	243
82	Caudal ventrolateral medulla mediates the depressor response elicited by the greater splanchnic nerve afferent stimulation in rats. Neuroscience Letters, 2002, 325, 134-138.	1.0	11
83	GABAA receptors in the rostral ventrolateral medulla mediate the depressor response induced by stimulation of the greater splanchnic nerve afferent fibres in rats. Neuroscience Letters, 1998, 249, 95-98.	1.0	14
84	Reactive Oxygen Species Facilitate Oxygen Sensing. Novartis Foundation Symposium, 0, , 95-105.	1.2	15