Wei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/158209/publications.pdf

Version: 2024-02-01

58 papers	1,431 citations	20 h-index	330025 37 g-index
58	58	58	1144
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Comprehensive Diagnosis and Tolerance Strategies for Electrical Faults and Sensor Faults in Dual Three-Phase PMSM Drives. IEEE Transactions on Power Electronics, 2019, 34, 6669-6684.	5.4	153
2	Fault-Tolerant Control of Dual Three-Phase Permanent-Magnet Synchronous Machine Drives Under Open-Phase Faults. IEEE Transactions on Power Electronics, 2017, 32, 2052-2063.	5.4	148
3	A Fault-Tolerant Permanent-Magnet Traction Module for Subway Applications. IEEE Transactions on Power Electronics, 2014, 29, 1646-1658.	5.4	135
4	Common Model Predictive Control for Permanent-Magnet Synchronous Machine Drives Considering Single-Phase Open-Circuit Fault. IEEE Transactions on Power Electronics, 2017, 32, 5862-5872.	5.4	70
5	Low-Frequency Pulse Voltage Injection Scheme-Based Sensorless Control of IPMSM Drives for Audible Noise Reduction. IEEE Transactions on Industrial Electronics, 2017, 64, 8415-8426.	5.2	65
6	A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems. Energies, 2012, 5, 1398-1412.	1.6	60
7	Analysis of Back-EMF in Flux-Reversal Permanent Magnet Machines by Air Gap Field Modulation Theory. IEEE Transactions on Industrial Electronics, 2019, 66, 3344-3355.	5.2	59
8	Direct Voltage Control of Dual-Stator Brushless Doubly Fed Induction Generator for Stand-Alone Wind Energy Conversion Systems. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	54
9	A Dual-Level Hysteresis Current Control for One Five-Leg VSI to Control Two PMSMs. IEEE Transactions on Power Electronics, 2017, 32, 804-814.	5.4	54
10	A Novel Energy Management Strategy of Onboard Supercapacitor for Subway Applications With Permanent-Magnet Traction System. IEEE Transactions on Vehicular Technology, 2014, 63, 2578-2588.	3.9	49
11	Deadbeat Predictive Current Control-Based Fault-Tolerant Scheme for Dual Three-Phase PMSM Drives. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 1591-1604.	3.7	37
12	Effect and Inhibition Method of Armature-Reaction Field on Superconducting Coil in Field-Modulation Superconducting Electrical Machine. IEEE Transactions on Energy Conversion, 2020, 35, 279-291.	3.7	35
13	Fault-Tolerant Control of Primary Permanent-Magnet Linear Motors With Single Phase Current Sensor for Subway Applications. IEEE Transactions on Power Electronics, 2019, 34, 10546-10556.	5.4	33
14	Multivector-Based Model Predictive Control With Geometric Solution of a Five-Phase Flux-Switching Permanent Magnet Motor. IEEE Transactions on Industrial Electronics, 2020, 67, 10035-10045.	5.2	31
15	A Fault Diagnosis Method for Current Sensors of Primary Permanent-Magnet Linear Motor Drives. IEEE Transactions on Power Electronics, 2021, 36, 2334-2345.	5.4	31
16	Direct Thrust Force Control of Primary Permanent-Magnet Linear Motors With Single DC-Link Current Sensor for Subway Applications. IEEE Transactions on Power Electronics, 2020, 35, 1365-1376.	5.4	30
17	Loss Calculation and Thermal Analysis for Nine-Phase Flux Switching Permanent Magnet Machine. IEEE Transactions on Energy Conversion, 2018, 33, 2133-2142.	3.7	25
18	Mathematical Analysis Model of Double-Stator Field Modulation HTS Machine Based on General Airgap Field Modulation Theory. IEEE Transactions on Energy Conversion, 2022, 37, 475-486.	3.7	25

#	Article	IF	CITATIONS
19	Analysis of PM Eddy Current Loss in Rotor-PM and Stator-PM Flux-switching Machines by Air-gap Field Modulation Theory. IEEE Transactions on Industrial Electronics, 2020, 67, 1824-1835.	5.2	24
20	Compensation of Current Measurement Offset Error for Permanent Magnet Synchronous Machines. IEEE Transactions on Power Electronics, 2020, 35, 11119-11128.	5.4	23
21	Fault-Tolerant Control of Common Electrical Faults in Dual Three-Phase PMSM Drives Fed by T-Type Three-Level Inverters. IEEE Transactions on Industry Applications, 2021, 57, 481-491.	3.3	22
22	A Slotless PM Variable Reluctance Resolver With Axial Magnetic Field. IEEE Transactions on Industrial Electronics, 2022, 69, 6329-6340.	5.2	18
23	Current Optimization-Based Fault-Tolerant Control of Standard Three-Phase PMSM Drives. IEEE Transactions on Energy Conversion, 2021, 36, 1023-1035.	3.7	17
24	Sensorless Control for SynRM Drives Using a Pseudo-Random High-Frequency Triangular-Wave Current Signal Injection Scheme. IEEE Transactions on Power Electronics, 2022, 37, 7122-7131.	5.4	17
25	Direct Torque Control of Five-leg Dual-PMSM Drive Systems for Fault-tolerant Purposes. Journal of Power Electronics, 2017, 17, 161-171.	0.9	16
26	Coupled Fault-Tolerant Control of Primary Permanent-Magnet Linear Motor Traction Systems for Subway Applications. IEEE Transactions on Power Electronics, 2021, 36, 3408-3421.	5.4	15
27	Dual-Level Located Feedforward Control for Five-Leg Two-Mover Permanent-Magnet Linear Motor Traction Systems. IEEE Transactions on Power Electronics, 2020, 35, 13673-13686.	5.4	13
28	Fast Switching Direct Torque Control Using a Single DC-link Current Sensor. Journal of Power Electronics, 2012, 12, 895-903.	0.9	13
29	Analysis of Airgap Field Modulation Principle of Flux Guides. IEEE Transactions on Industry Applications, 2020, 56, 4758-4768.	3.3	12
30	A Hybrid Dual-Mode Control for Permanent-Magnet Synchronous Motor Drives. IEEE Access, 2020, 8, 105864-105873.	2.6	12
31	Phase-Shifting Fault-Tolerant Control of Permanent-Magnet Linear Motors With Single-Phase Current Sensor. IEEE Transactions on Industrial Electronics, 2022, 69, 2414-2425.	5.2	12
32	Phase Model Predictive Voltage Control for Half-Centralized Open-End Winding Permanent-Magnet Linear Motor Traction Systems. IEEE Transactions on Industrial Electronics, 2022, 69, 12201-12212.	5.2	11
33	Comparison of two different traction systems for subway application using Energetic Macroscopic Representation., 2012,,.		10
34	Dual-Vector Located Model Predictive Control With Single DC-Link Current Sensor for Permanent-Magnet Linear Motor Drives. IEEE Transactions on Power Electronics, 2021, 36, 14142-14154.	5.4	10
35	Hybrid modeling and applications of virtual metro systems. , 2010, , .		8
36	An energy recovery system of regenerative braking based permanent magnet synchronous motor for electric vehicles., 2013,,.		8

#	Article	IF	CITATIONS
37	Comparison of control strategies for a novel dual-stator brushless doubly-fed induction generator in wind energy applications. , 2015 , , .		8
38	Comprehensive coordinated control strategy of PMSGâ€based wind turbine for system inertia support. IET Renewable Power Generation, 2021, 15, 1915-1926.	1.7	8
39	Comparison of modular linear flux-switching permanent magnet motors with different mover and stator pole pitch., 2017, , .		7
40	Lineâ∈modulationâ∈based fluxâ∈weakening control for permanentâ∈magnet synchronous machines. IET Power Electronics, 2018, 11, 930-936.	1.5	7
41	Modeling and Suppression of Torque Ripple in PMSM Based on the General Airgap Field Modulation Theory. IEEE Transactions on Power Electronics, 2022, 37, 12502-12512.	5.4	7
42	Modulation behaviours and interchangeability of modulators for electrical machines. IET Electric Power Applications, 2021, 15, 542-554.	1.1	6
43	Collaborative Control for Half-Centralized Open-End Winding Permanent-Magnet Linear Motor Drive Systems. IEEE Transactions on Power Electronics, 2022, 37, 10399-10411.	5.4	6
44	Simplified Model Predictive Current Control of Primary Permanent-Magnet Linear Motor Traction Systems for Subway Applications. Energies, 2019, 12, 4144.	1.6	5
45	Analysis of Model Predictive Current-Controlled Permanent Magnet Synchronous Motor Drives with Inaccurate DC Bus Voltage Measurement. Energies, 2020, 13, 353.	1.6	5
46	Non-symmetrical permanent-magnet linear motor traction systems for subway applications. , 2017, , .		3
47	Direct Thrust Force Control of Half-Open Winding Primary Permanent Magnet Linear Motor. IEEE Access, 2022, 10, 59970-59978.	2.6	3
48	A hybrid energy source based double-stator permanent magnet brushless motor drive for hybrid electric vehicles. , 2011, , .		2
49	A Novel Detent Force Reduction Method for Primary Permanent Magnet Linear Motor Traction System in Subway Applications. , 2018, , .		2
50	Fault-Tolerant Control for Five-Leg Two-Mover Permanent-Magnet Linear Motor Traction Systems with Open-Phase Fault. , 2021, , .		2
51	Diagnosis of Current Sensor Faults in Open Winding Permanent-Magnet Linear Motor Drive Systems. , 2021, , .		2
52	Energy-Release Strategy for Permanent Magnet Traction System with Onboard Energy Storage System for Subway Applications. , 2013, , .		1
53	Modeling, Control and Simulation of Subway Applications Using Energetic Macroscopic Representation. , 2016, , .		1
54	Discrimination Method of Interturn Short-Circuit and Resistive Unbalance Faults for Synchronous Condenser. IEEE Access, 2021, 9, 129706-129717.	2.6	1

#	Article	IF	CITATIONS
55	A simple initial rotor position identification method for PMSM. , 2015, , .		O
56	A novel fault-tolerant permanent-magnet synchronous machine drive considering open-phase faults. , $2016, , .$		0
57	Voltage-Sensorless Model Predictive Current Control for Permanent-Magnet Synchronous Motor Drives. , 2019, , .		O
58	Hardware-in-the-Loop Simulation for Subway Applications with Onboard Supercapacitor. Lecture Notes in Electrical Engineering, 2014, , 3-9.	0.3	0