Heidi A Webber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1581718/publications.pdf

Version: 2024-02-01

55 papers 3,076 citations

28 h-index 53 g-index

56 all docs 56 docs citations

56 times ranked 3092 citing authors

#	Article	IF	CITATIONS
1	Machine learning in crop yield modelling: A powerful tool, but no surrogate for science. Agricultural and Forest Meteorology, 2022, 312, 108698.	4.8	43
2	Responses of winter wheat and maize to varying soil moisture: From leaf to canopy. Agricultural and Forest Meteorology, 2022, 314, 108803.	4.8	7
3	Uncertainty in climate change impact studies for irrigated maize cropping systems in southern Spain. Scientific Reports, 2022, 12, 4049.	3.3	9
4	Processing tomatoes under climate change. Nature Food, 2022, 3, 404-405.	14.0	3
5	Simulation of winter wheat response to variable sowing dates and densities in a high-yielding environment. Journal of Experimental Botany, 2022, 73, 5715-5729.	4.8	10
6	Modification of the microclimate and water balance through the integration of trees into temperate cropping systems. Agricultural and Forest Meteorology, 2022, 323, 109065.	4.8	13
7	Global wheat production could benefit from closing the genetic yield gap. Nature Food, 2022, 3, 532-541.	14.0	29
8	Can reduced tillage buffer the future climate warming effects on maize yield in different soil types of West Africa?. Soil and Tillage Research, 2021, 205, 104767.	5.6	4
9	Implications of data aggregation method on crop model outputs – The case of irrigated potato systems in Tasmania, Australia. European Journal of Agronomy, 2021, 126, 126276.	4.1	11
10	To bias correct or not to bias correct? An agricultural impact modelers' perspective on regional climate model data. Agricultural and Forest Meteorology, 2021, 304-305, 108406.	4.8	31
11	Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change. Environmental Research Letters, 2021, 16, 104033.	5.2	6
12	Extreme lows of wheat production in Brazil. Environmental Research Letters, 2021, 16, 104025.	5.2	6
13	Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling. Ecological Indicators, 2021, 129, 107870.	6.3	18
14	Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2021, 2, 873-885.	14.0	263
15	Interactive effects of conservation tillage, residue management, and nitrogen fertilizer application on soil properties under maize-cotton rotation system on highly weathered soils of West Africa. Soil and Tillage Research, 2020, 196, 104473.	5.6	26
16	Effects of soil- and climate data aggregation on simulated potato yield and irrigation water requirement. Science of the Total Environment, 2020, 710, 135589.	8.0	23
17	Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food, 2020, 1, 775-782.	14.0	67
18	Modelling food security: Bridging the gap between the micro and the macro scale. Global Environmental Change, 2020, 63, 102085.	7.8	47

#	Article	IF	CITATIONS
19	Modelling climate change impacts on maize yields under low nitrogen input conditions in subâ€6aharan Africa. Global Change Biology, 2020, 26, 5942-5964.	9.5	60
20	No perfect storm for crop yield failure in Germany. Environmental Research Letters, 2020, 15, 104012.	5.2	53
21	Early vigour in wheat: Could it lead to more severe terminal drought stress under elevated atmospheric [CO ₂] and semiâ€arid conditions?. Global Change Biology, 2020, 26, 4079-4093.	9.5	13
22	Using reanalysis in crop monitoring and forecasting systems. Agricultural Systems, 2019, 168, 144-153.	6.1	28
23	Soil tillage, residue management and site interactions affecting nitrogen use efficiency in maize and cotton in the Sudan Savanna of Africa. Field Crops Research, 2019, 244, 107629.	5.1	6
24	Simulation of maize evapotranspiration: An inter-comparison among 29 maize models. Agricultural and Forest Meteorology, 2019, 271, 264-284.	4.8	62
25	Effects of input data aggregation on simulated crop yields in temperate and Mediterranean climates. European Journal of Agronomy, 2019, 103, 32-46.	4.1	16
26	Global wheat production with 1.5 and 2.0°C above preâ€industrial warming. Global Change Biology, 2019, 25, 1428-1444.	9.5	107
27	Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25, 155-173.	9.5	312
28	Potential impact of climate change on peanut yield in Senegal, West Africa. Field Crops Research, 2018, 219, 148-159.	5.1	34
29	Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna. Environmental Research Letters, 2018, 13, 034014.	5.2	70
30	How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield?. European Journal of Agronomy, 2018, 100, 67-75.	4.1	68
31	Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. Field Crops Research, 2018, 216, 75-88.	5.1	36
32	Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 2018, 9, 4249.	12.8	230
33	Crop management adaptations to improve and stabilize crop yields under low-yielding conditions in the Sudan Savanna of West Africa. European Journal of Agronomy, 2018, 101, 1-9.	4.1	14
34	Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Research, 2017, 202, 21-35.	5.1	91
35	Heat stress is overestimated in climate impact studies for irrigated agriculture. Environmental Research Letters, 2017, 12, 054023.	5. 2	88
36	Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements. Agricultural Systems, 2017, 157, 81-92.	6.1	52

#	Article	IF	Citations
37	Weather impacts on crop yields - searching for simple answers to a complex problem. Environmental Research Letters, 2017, 12, 081001.	5.2	43
38	Effects of Fertilization Rate and Water Availability on Peanut Growth and Yield in Senegal (West) Tj ETQq0 0 0 rg	BT/Qverlo	ock 10 Tf 50
39	Effect of sowing date distributions on simulation of maize yields at regional scale – A case study in Central Ghana, West Africa. Agricultural Systems, 2016, 147, 10-23.	6.1	29
40	Modelling the impact of heat stress on maize yield formation. Field Crops Research, 2016, 198, 226-237.	5.1	72
41	Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe. Environmental Research Letters, 2016, 11, 074007.	5.2	37
42	Simulating canopy temperature for modelling heat stress in cereals. Environmental Modelling and Software, 2016, 77, 143-155.	4.5	68
43	The implication of irrigation in climate change impact assessment: a Europeanâ€wide study. Global Change Biology, 2015, 21, 4031-4048.	9.5	66
44	Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 2015, 72, 287-303.	4.5	230
45	Combined analysis of climate, technological and price changes on future arable farming systems in Europe. Agricultural Systems, 2015, 140, 56-73.	6.1	25
46	Climate change impacts on European crop yields: Do we need to consider nitrogen limitation?. European Journal of Agronomy, 2015, 71, 123-134.	4.1	45
47	Heat stress in cereals: Mechanisms and modelling. European Journal of Agronomy, 2015, 64, 98-113.	4.1	227
48	What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa?. Agricultural Systems, 2014, 127, 161-177.	6.1	98
49	Legume Production and Irrigation Strategies in the <scp>A</scp> ral Sea Basin: Yield, Yield Components, Water Relations and Crop Development of Common Bean (<i><scp>P</scp>haseolus) Tj ETQq1 1</i>	0.784314 3.5	rgBT /Overlo
50	Farming in the West African Sudan Savanna: Insights in the context of climate change. African Journal of Agricultural Research Vol Pp, 2013, 8, 4693-4705.	0.5	63
51	Adapting the CROPGRO model for saline soils: the case for a common bean crop. Irrigation Science, 2010, 28, 317-329.	2.8	12
52	Effects of Deficit Irrigation and Salinity Stress on Common Bean (<i>Phaseolus Vulgaris</i> L.) and Mungbean (<i>Vigna Radiata</i> (L.) Wilczek) Grown in a Controlled Environment. Journal of Agronomy and Crop Science, 2010, 196, 262-272.	3.5	20
53	Response of two legume crops to soil salinity in gypsiferous soils. Irrigation and Drainage, 2009, 58, 586-595.	1.7	3
54	Water use efficiency of common bean and green gram grown using alternate furrow and deficit irrigation. Agricultural Water Management, 2006, 86, 259-268.	5.6	60

#	Article	IF	CITATIONS
55	Crop Models as Tools for Agroclimatology. Agronomy, 0, , 519-546.	0.2	4