
Pedro L Iglesias-Rey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1581153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines. Water (Switzerland), 2022, 14, 888.	1.2	9
2	Use of Fixed and Variable Speed Pumps in Water Distribution Networks with Different Control Strategies. Water (Switzerland), 2021, 13, 479.	1.2	11
3	Inclusion of Hydraulic Controls in Rehabilitation Models of Drainage Networks to Control Floods. Water (Switzerland), 2021, 13, 514.	1.2	3
4	Methodology for Determining the Maximum Potentially Recoverable Energy in Water Distribution Networks. Water (Switzerland), 2021, 13, 464.	1.2	4
5	Design of Pumping Stations Using a Multicriteria Analysis and the Application of the AHP Method. Sustainability, 2021, 13, 5876.	1.6	3
6	Search Space Reduction for Genetic Algorithms Applied to Drainage Network Optimization Problems. Water (Switzerland), 2021, 13, 2008.	1.2	7
7	Layout Selection for an Optimal Sewer Network Design Based on Land Topography, Streets Network Topology, and Inflows. Water (Switzerland), 2021, 13, 2491.	1.2	3
8	Methodology for Pumping Station Design Based on Analytic Hierarchy Process (AHP). Water (Switzerland), 2021, 13, 2886.	1.2	8
9	Pumping Station Design in Water Distribution Networks Considering the Optimal Flow Distribution between Sources and Capital and Operating Costs. Water (Switzerland), 2021, 13, 3098.	1.2	3
10	Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change. Water (Switzerland), 2020, 12, 2491.	1.2	16
11	Influence of the Pump Control System in the Selection of the Number of Fixed Speed and Variable Speed Drive Pumps in Water Pumping Stations. Proceedings (mdpi), 2020, 48, 22.	0.2	2
12	Closure to "Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air―by Oscar E. Coronado-Hernández, Vicente S. Fuertes-Miquel, Pedro L. Iglesias-Rey, and Francisco J. MartÃnez-Solano. Journal of Hydraulic Engineering, 2020, 146, 07020002.	0.7	1
13	Battle of Postdisaster Response and Restoration. Journal of Water Resources Planning and Management - ASCE, 2020, 146, 04020067.	1.3	14
14	Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities. Water (Switzerland), 2020, 12, 1049.	1.2	58
15	Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research/De Recherches Hydrauliques, 2019, 57, 318-326.	0.7	38
16	Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 2019, 16, 299-311.	1.0	40
17	Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water (Switzerland), 2019, 11, 935.	1.2	31
18	Urban Drainage Networks Rehabilitation Using Multi-Objective Model and Search Space Reduction Methodology. Infrastructures, 2019, 4, 35.	1.4	9

PEDRO L IGLESIAS-REY

#	Article	IF	CITATIONS
19	Urban Drainage Network Rehabilitation Considering Storm Tank Installation and Pipe Substitution. Water (Switzerland), 2019, 11, 515.	1.2	17
20	Multi-Objective Optimization of Drainage Networks for Flood Control in Urban Area Due to Climate Change. Proceedings (mdpi), 2019, 48, .	0.2	0
21	Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air. Journal of Hydraulic Engineering, 2018, 144, .	0.7	20
22	Computational Determination of Air Valves Capacity Using CFD Techniques. Water (Switzerland), 2018, 10, 1433.	1.2	13
23	Combining Skeletonization, Setpoint Curves, and Heuristic Algorithms to Define District Metering Areas in the Battle of Water Networks District Metering Areas. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	1.3	10
24	Pseudo-genetic Model Optimization for Rehabilitation of Urban Storm-water Drainage Networks. Procedia Engineering, 2017, 186, 617-625.	1.2	12
25	Population Size Influence on the Efficiency of Evolutionary Algorithms to Design Water Networks. Procedia Engineering, 2017, 186, 341-348.	1.2	12
26	Exact Skeletonization Method in Water Distribution Systems for Hydraulic and Quality Models. Procedia Engineering, 2017, 186, 286-293.	1.2	8
27	Diferencias en el tratamiento de la ecuaciin de continuidad para nudos en carga en EPA-SWMM (Effect) Tj ETQq1	1 0.78431 0.4	4 rgBT /Ov∉ 0
28	Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization. Water (Switzerland), 2016, 8, 259.	1.2	22
29	The Efficiency of Setting Parameters in a Modified Shuffled Frog Leaping Algorithm Applied to Optimizing Water Distribution Networks. Water (Switzerland), 2016, 8, 182.	1.2	28
30	A Methodology for the Optimization of Flow Rate Injection to Looped Water Distribution Networks through Multiple Pumping Stations. Water (Switzerland), 2016, 8, 575.	1.2	13
31	Efficiency Criteria as a Solution to the Uncertainty in the Choice of Population Size in Population-Based Algorithms Applied to Water Network Optimization. Water (Switzerland), 2016, 8, 583.	1.2	3
32	Discussion of "Numerical Modeling of Mixed Flows in Storm Water Systems: Critical Review of Literature―by Samba Bousso, Mathurin Daynou, and Musandji Fuamba. Journal of Hydraulic Engineering, 2015, 141, 07014018.	0.7	6
33	Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing. Water Resources Management, 2015, 29, 4817-4831.	1.9	47
34	Comparative Study of Intake and Exhaust Air Flows of Different Commercial Air Valves. Procedia Engineering, 2014, 89, 1412-1419.	1.2	12
35	Using the Set Point Concept to Allow Water Distribution System Skeletonization Preserving Water Quality Constraints. Procedia Engineering, 2014, 89, 213-219.	1.2	6
36	BBLAWN: A Combined Use of Best Management Practices and an Optimization Model Based on a Pseudo-Genetic Algorithm. Procedia Engineering, 2014, 89, 29-36.	1.2	13

PEDRO L IGLESIAS-REY

#	Article	IF	CITATIONS
37	Battle of the Water Networks II. Journal of Water Resources Planning and Management - ASCE, 2014, 140, .	1.3	92
38	Design of Water Distribution Networks using a Pseudo-Genetic Algorithm and Sensitivity of Genetic Operators. Water Resources Management, 2013, 27, 4149-4162.	1.9	35
39	Numerical Modeling of Mixed Flows in Storm Water Systems: Critical Review of Literature. Journal of Hydraulic Engineering, 2013, 139, 385-396.	0.7	42
40	Computational models calibration: Experiences in environmental engineering studies. Computer Applications in Engineering Education, 2011, 19, 795-805.	2.2	1
41	Statistical Analysis of Water Distribution Networks Design Using Harmony Search. , 2009, , .		0
42	Comparison of evolutionary algorithms for design of sewer systems. , 2009, , 261-263.		1
43	Application of the harmony search algorithm to water distribution networks design. , 2009, , 265-271.		3
44	Air valves behavior. Comparison between compressible and incompressible flow. , 2009, , 293-296.		2
45	Parameters determination for a mixing model in storage facilities in water distribution systems. , 2009, , 303-305.		Ο
46	Hydraulic Analysis of Peak Demand in Looped Water Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2008, 134, 504-510.	1.3	14
47	A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Engineering Optimization, 2008, 40, 655-668.	1.5	43
48	STUDY OF SENSITIVITY OF THE PARAMETERS OF A GENETIC ALGORITHM FOR DESIGN OF WATER DISTRIBUTION NETWORKS. Journal of Urban and Environmental Engineering, 2007, 1, 61-69.	0.3	7
49	Mathematical modelling of hydraulic transients in complex systems. Mathematical and Computer Modelling, 2004, 39, 529-540.	2.0	22
50	Mathematical models and methods in the water industry. Mathematical and Computer Modelling, 2004, 39, 1353-1374.	2.0	31
51	Mathematical modelling of hydraulic transients in simple systems. Mathematical and Computer Modelling, 2002, 35, 801-812.	2.0	46
52	Pipeline start-up with entrapped air. Journal of Hydraulic Research/De Recherches Hydrauliques, 1999, 37, 579-590.	0.7	90
53	The diffuse fraction of daily global radiation. Renewable Energy, 1994, 4, 89-94.	4.3	2
54	Estimation of the diffuse component of daily global radiation in Valencia and Sevilla. Renewable Energy, 1993, 3, 747-755.	4.3	2

#	Article	IF	CITATIONS
55	Reducciin de tiempos de computaciin mediante la modificaciin directa de parrmetros en SWMM a travvs de un Toolkit (Reducing Computation Time by Direct Modification of Swmm Parameters Through a) Tj ETQq1 1 0.	7 8 4314 rg	g BJT /Overloc
56	Annlisis nummrico del vaciado de agua en una conducciin de perfil irregular con vvlvulas de aire (Behavior of a Water-Draining Pipeline of Irregular Profile with Air Valves). SSRN Electronic Journal, 0, , .	0.4	0
57	Desarrollo de una metodologga para la evaluaciin de la mmxima energga recuperable en un sistema de distribuciin de agua (Development of a Methodology for the Evaluation of Maximum Energy Recovery) Tj ETQq1 1	@7 84314	l œBT /Overl
58	Rehabilitaciin de redes de drenaje mediante la combinaciin de tanques de retenciin y sustituciin de conducciones (Rehabilitation of Drainage Networks Through the Combination of Retention Tanks and) Tj ETQq0 C	0.ægBT /C	Werlock 10 1
59	Determinaciin del tamaao de poblaciin inicial mms eficiente en el dimensionado de redes de agua mediante algoritmos meta-heurrsticos (Choice of the Most Efficient Population Size in Meta-Heuristic) Tj ETQq1 1	@7 84314	ł œBT /Overi
60	Depresiones alcanzadas durante el vaciado de agua en conducciones presurizadas con aire atrapado (Negative Pressure Occurrence During the Draining Operation of Water Pipelines with Entrapped Air). SSRN Electronic Journal, 0, , .	0.4	0