Esteban Celis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1580725/publications.pdf

Version: 2024-02-01

48 papers

2,813 citations

30 h-index 223531 46 g-index

49 all docs

49 docs citations

49 times ranked 5077 citing authors

#	Article	IF	CITATIONS
1	Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nature Communications, 2017, 8, 2122.	5.8	196
2	An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. Journal of Clinical Investigation, 2018, 128, 5549-5560.	3.9	193
3	The PTEN pathway in T _{regs} is a critical driver of the suppressive tumor microenvironment. Science Advances, 2015, 1, e1500845.	4.7	167
4	Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunology, Immunotherapy, 2017, 66, 705-716.	2.0	128
5	Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunology, Immunotherapy, 2017, 66, 877-890.	2.0	126
6	Optimized Peptide Vaccines Eliciting Extensive CD8 T-Cell Responses with Therapeutic Antitumor Effects. Cancer Research, 2009, 69, 9012-9019.	0.4	119
7	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	2.1	119
8	A Phase I Trial of an HLA-A1 Restricted MAGE-3 Epitope Peptide with Incomplete Freundʽs Adjuvant in Patients with Resected High-Risk Melanoma. Journal of Immunotherapy, 1999, 22, 431-440.	1.2	114
9	Local Activation of p53 in the Tumor Microenvironment Overcomes Immune Suppression and Enhances Antitumor Immunity. Cancer Research, 2017, 77, 2292-2305.	0.4	111
10	Peptide vaccines in cancer â€" old concept revisited. Current Opinion in Immunology, 2017, 45, 1-7.	2.4	94
11	Identification of αâ€fetoproteinâ€specific Tâ€cell receptors for hepatocellular carcinoma immunotherapy. Hepatology, 2018, 68, 574-589.	3.6	87
12	Combinatorial Immunotherapy of Polyinosinic–Polycytidylic Acid and Blockade of Programmed Death-Ligand 1 Induce Effective CD8 T-cell Responses against Established Tumors. Clinical Cancer Research, 2014, 20, 1223-1234.	3.2	82
13	STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunology, Immunotherapy, 2015, 64, 1057-1066.	2.0	81
14	Primary tumor-induced immunity eradicates disseminated tumor cells in syngeneic mouse model. Nature Communications, 2019, 10, 1430.	5.8	77
15	BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses. Cancer Immunology, Immunotherapy, 2013, 62, 787-799.	2.0	71
16	TriVax-HPV: an improved peptide-based therapeutic vaccination strategy against human papillomavirus-induced cancers. Cancer Immunology, Immunotherapy, 2012, 61, 1307-1317.	2.0	70
17	Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17–producing CD4+ T cells. Journal of Experimental Medicine, 2015, 212, 351-367.	4.2	65
18	Optimization of Peptide Vaccines to Induce Robust Antitumor CD4 T-cell Responses. Cancer Immunology Research, 2017, 5, 72-83.	1.6	61

#	Article	IF	Citations
19	Interferon \hat{I}^3 limits the effectiveness of melanoma peptide vaccines. Blood, 2011, 117, 135-144.	0.6	60
20	T Helper Lymphocytes Rescue CTL from Activation-Induced Cell Death. Journal of Immunology, 2006, 177, 2862-2872.	0.4	54
21	Cancer immunotherapy: moving forward with peptide T cell vaccines. Current Opinion in Immunology, 2017, 47, 57-63.	2.4	53
22	Peptide Vaccination of Patients With Metastatic Melanoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2006, 29, 352-360.	0.6	52
23	<i>In vivo</i> Expansion, Persistence, and Function of Peptide Vaccine–Induced CD8 T Cells Occur Independently of CD4 T Cells. Cancer Research, 2008, 68, 9892-9899.	0.4	47
24	Poly-ICLC, a multi-functional immune modulator for treating cancer. Seminars in Immunology, 2020, 49, 101414.	2.7	47
25	Transnuclear TRP1-Specific CD8 T Cells with High or Low Affinity TCRs Show Equivalent Antitumor Activity. Cancer Immunology Research, 2013, 1, 99-111.	1.6	45
26	Peptide epitope identification for tumor-reactive CD4 T cells. Current Opinion in Immunology, 2008, 20, 221-227.	2.4	43
27	Poly-IC enhances the effectiveness of cancer immunotherapy by promoting T cell tumor infiltration. , 2020, 8, e001224.		41
28	A Potent Vaccination Strategy That Circumvents Lymphodepletion for Effective Antitumor Adoptive T-cell Therapy. Cancer Research, 2012, 72, 1986-1995.	0.4	37
29	Designing therapeutic cancer vaccines by mimicking viral infections. Cancer Immunology, Immunotherapy, 2017, 66, 203-213.	2.0	36
30	c-Met is a novel tumor associated antigen for T-cell based immunotherapy against NK/T cell lymphoma. Oncolmmunology, 2015, 4, e976077.	2.1	35
31	Epigenetic modification augments the immunogenicity of human leukocyte antigen G serving as a tumor antigen for T cell-based immunotherapy. Oncolmmunology, 2016, 5, e1169356.	2.1	34
32	The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice. Cancer Immunology, Immunotherapy, 2019, 68, 455-466.	2.0	31
33	Induction of tumor-reactive T helper responses by a posttranslational modified epitope from tumor protein p53. Cancer Immunology, Immunotherapy, 2014, 63, 469-478.	2.0	25
34	Role of dendritic cellâ€mediated immune response in oral homeostasis: A new mechanism of osteonecrosis of the jaw. FASEB Journal, 2020, 34, 2595-2608.	0.2	25
35	An optimized peptide vaccine strategy capable of inducing multivalent CD8 ⁺ T cell responses with potent antitumor effects. Oncolmmunology, 2015, 4, e1043504.	2.1	24
36	Targeting HER-3 to elicit antitumor helper T cells against head and neck squamous cell carcinoma. Scientific Reports, 2015, 5, 16280.	1.6	22

#	Article	IF	CITATIONS
37	Role of MDA5 and interferon-I in dendritic cells for T cell expansion by anti-tumor peptide vaccines in mice. Cancer Immunology, Immunotherapy, 2018, 67, 1091-1103.	2.0	20
38	A novel combinatorial cancer immunotherapy. Oncolmmunology, 2014, 3, e28440.	2.1	17
39	H3K4me3 mediates the NF- \hat{l}^{Ω} B p50 homodimer binding to the <i>pdcd1</i> promoter to activate PD-1 transcription in T cells. Oncolmmunology, 2018, 7, e1483302.	2.1	15
40	Targeting phosphorylated p53 to elicit tumor-reactive T helper responses against head and neck squamous cell carcinoma. Oncolmmunology, 2018, 7, e1466771.	2.1	14
41	Sustained Persistence of IL2 Signaling Enhances the Antitumor Effect of Peptide Vaccines through T-cell Expansion and Preventing PD-1 Inhibition. Cancer Immunology Research, 2018, 6, 617-627.	1.6	13
42	PD-L1-specific helper T-cells exhibit effective antitumor responses: new strategy of cancer immunotherapy targeting PD-L1 in head and neck squamous cell carcinoma. Journal of Translational Medicine, 2019, 17, 207.	1.8	13
43	Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. Oncolmmunology, 2021, 10, 1856545.	2.1	13
44	Effective antitumor peptide vaccines can induce severe autoimmune pathology. Oncotarget, 2017, 8, 70317-70331.	0.8	12
45	Mutated BRAF Emerges as a Major Effector of Recurrence in a Murine Melanoma Model After Treatment With Immunomodulatory Agents. Molecular Therapy, 2015, 23, 845-856.	3.7	11
46	Interruption of MDM2 signaling augments MDM2-targeted T cell-based antitumor immunotherapy through antigen-presenting machinery. Cancer Immunology, Immunotherapy, 2021, 70, 3421-3434.	2.0	11
47	Double-Stranded RNA Immunomodulators in Prostate Cancer. Urologic Clinics of North America, 2020, 47, e1-e8.	0.8	2
48	Innovative immunotherapy for nasal NK/T-cell lymphoma. Journal of Japan Society of Immunology & Allergology in Otolaryngology, 2018, 36, 15-22.	0.0	0