Joana Rocha-Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1580689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restriction of Viral Replication, Rather than T Cell Immunopathology, Drives Lethality in Murine Norovirus CR6-Infected STAT1-Deficient Mice. Journal of Virology, 2022, 96, jvi0206521.	1.5	1
2	HIV protease inhibitors Nelfinavir and Lopinavir/Ritonavir markedly improve lung pathology in SARS-CoV-2-infected Syrian hamsters despite lack of an antiviral effect. Antiviral Research, 2022, 202, 105311.	1.9	8
3	Assessment of the anti-norovirus activity in cell culture using the mouse norovirus: Identification of active compounds. Antiviral Chemistry and Chemotherapy, 2021, 29, 204020662110268.	0.3	3
4	Screening and in vitro antiviral assessment of small molecules against fluorescent protein-expressing Bunyamwera virus in a cell-based assay using high-content imaging. Antiviral Chemistry and Chemotherapy, 2021, 29, 204020662110334.	0.3	3
5	Assessment of the anti-norovirus activity in cell culture using the mouse norovirus: Early mechanistic studies. Antiviral Chemistry and Chemotherapy, 2021, 29, 204020662110251.	0.3	1
6	Infection of zebrafish larvae with human norovirus and evaluation of the in vivo efficacy of small-molecule inhibitors. Nature Protocols, 2021, 16, 1830-1849.	5.5	20
7	Itraconazole for COVID-19: preclinical studies and a proof-of-concept randomized clinical trial. EBioMedicine, 2021, 66, 103288.	2.7	21
8	Current and Future Antiviral Strategies to Tackle Gastrointestinal Viral Infections. Microorganisms, 2021, 9, 1599.	1.6	12
9	Structure–Activity Relationship Studies on Novel Antiviral Agents for Norovirus Infections. Microorganisms, 2021, 9, 1795.	1.6	1
10	A Novel Class of Norovirus Inhibitors Targeting the Viral Protease with Potent Antiviral Activity In Vitro and In Vivo. Viruses, 2021, 13, 1852.	1.5	7
11	Discovery of a Novel Class of Norovirus Inhibitors with High Barrier of Resistance. Pharmaceuticals, 2021, 14, 1006.	1.7	0
12	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	5.8	41
13	Favipiravir at high doses has potent antiviral activity in SARS-CoV-2â [~] infected hamsters, whereas hydroxychloroquine lacks activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26955-26965.	3.3	240
14	Animal models for COVID-19. Nature, 2020, 586, 509-515.	13.7	705
15	STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nature Communications, 2020, 11, 5838.	5.8	225
16	Enhanced efficacy of endonuclease inhibitor baloxavir acid against orthobunyaviruses when used in combination with ribavirin. Journal of Antimicrobial Chemotherapy, 2020, 75, 3189-3193.	1.3	5
17	Diketo acids inhibit the cap-snatching endonuclease of several Bunyavirales. Antiviral Research, 2020, 183, 104947.	1.9	22
18	Emerging preclinical evidence does not support broad use of hydroxychloroquine in COVID-19 patients. Nature Communications, 2020, 11, 4253.	5.8	43

JOANA ROCHA-PEREIRA

#	Article	IF	CITATIONS
19	Anti-norovirus activity of C7-modified 4-amino-pyrrolo[2,1-f][1,2,4]triazine C-nucleosides. European Journal of Medicinal Chemistry, 2020, 195, 112198.	2.6	14
20	A robust human norovirus replication model in zebrafish larvae. PLoS Pathogens, 2019, 15, e1008009.	2.1	112
21	Targeting the Viral Polymerase of Diarrhea-Causing Viruses as a Strategy to Develop a Single Broad-Spectrum Antiviral Therapy. Viruses, 2019, 11, 173.	1.5	18
22	Structural and functional similarities in bunyaviruses: Perspectives for panâ€bunya antivirals. Reviews in Medical Virology, 2019, 29, e2039.	3.9	21
23	A new antiviral scaffold for human norovirus identified with computer-aided approaches on the viral polymerase. Scientific Reports, 2019, 9, 18413.	1.6	8
24	Interferon lambda (IFN-λ) efficiently blocks norovirus transmission in a mouse model. Antiviral Research, 2018, 149, 7-15.	1.9	24
25	Species Specificity of Type III Interferon Activity and Development of a Sensitive Luciferase-Based Bioassay for Quantitation of Mouse Interferon-λ. Journal of Interferon and Cytokine Research, 2018, 38, 469-479.	0.5	11
26	A Single Nucleoside Viral Polymerase Inhibitor Against Norovirus, Rotavirus, and Sapovirus-Induced Diarrhea. Journal of Infectious Diseases, 2018, 218, 1753-1758.	1.9	23
27	Assessing the Efficacy of Small Molecule Inhibitors in a Mouse Model of Persistent Norovirus Infection. Bio-protocol, 2018, 8, e2831.	0.2	1
28	Synthesis and in vitro antiviral evaluation of 4-substituted 3,4-dihydropyrimidinones. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 139-142.	1.0	27
29	Norovirus genetic diversity and evolution: implications for antiviral therapy. Current Opinion in Virology, 2016, 20, 92-98.	2.6	17
30	Post-exposure antiviral treatment of norovirus infections effectively protects against diarrhea and reduces virus shedding in the stool in a mortality mouse model. Antiviral Research, 2016, 132, 76-84.	1.9	14
31	Inhibition of human norovirus by a viral polymerase inhibitor in the B cell culture system and in the mouse model. Antiviral Research, 2016, 132, 46-49.	1.9	54
32	Treatment with a Nucleoside Polymerase Inhibitor Reduces Shedding of Murine Norovirus in Stool to Undetectable Levels without Emergence of Drug-Resistant Variants. Antimicrobial Agents and Chemotherapy, 2016, 60, 1907-1911.	1.4	13
33	Prophylactic treatment with the nucleoside analogue 2'-C-methylcytidine completely prevents transmission of norovirus. Journal of Antimicrobial Chemotherapy, 2015, 70, 190-197.	1.3	31
34	Molecular Chaperone Hsp90 Is a Therapeutic Target for Noroviruses. Journal of Virology, 2015, 89, 6352-6363.	1.5	51
35	ID: 146. Cytokine, 2015, 76, 94.	1.4	1
36	The Enterovirus Protease Inhibitor Rupintrivir Exerts Cross-Genotypic Anti-Norovirus Activity and Clears Cells from the Norovirus Replicon. Antimicrobial Agents and Chemotherapy, 2014, 58, 4675-4681.	1.4	45

JOANA ROCHA-PEREIRA

#	Article	IF	CITATIONS
37	Norovirus: Targets and tools in antiviral drug discovery. Biochemical Pharmacology, 2014, 91, 1-11.	2.0	49
38	The Viral Polymerase Inhibitor 2′- <i>C</i> -Methylcytidine Inhibits Norwalk Virus Replication and Protects against Norovirus-Induced Diarrhea and Mortality in a Mouse Model. Journal of Virology, 2013, 87, 11798-11805.	1.5	85
39	Favipiravir (T-705) inhibits in vitro norovirus replication. Biochemical and Biophysical Research Communications, 2012, 424, 777-780.	1.0	122
40	Inhibition of norovirus replication by the nucleoside analogue 2′-C-methylcytidine. Biochemical and Biophysical Research Communications, 2012, 427, 796-800.	1.0	59
41	Outbreak of acute gastroenteritis caused by adenovirus type 41 in a kindergarten. Epidemiology and Infection, 2011, 139, 1672-1675.	1.0	13
42	(E)-2-Styrylchromones as potential anti-norovirus agents. Bioorganic and Medicinal Chemistry, 2010, 18, 4195-4201.	1.4	48
43	Targeting Norovirus: Strategies for the Discovery of New Antiviral Drugs. , 0, , .		4