Alberto ElÃ-as-Villalobos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1580599/publications.pdf

Version: 2024-02-01

1040056 1125743 14 342 9 13 citations g-index h-index papers 15 15 15 457 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The <i>O</i> i>-Mannosyltransferase PMT4 Is Essential for Normal Appressorium Formation and Penetration in <i>Ustilago maydis</i> i>ÂÂ. Plant Cell, 2009, 21, 3397-3412.	6.6	60
2	The General Transcriptional Repressor Tup1 Is Required for Dimorphism and Virulence in a Fungal Plant Pathogen. PLoS Pathogens, 2011, 7, e1002235.	4.7	52
3	Identification of O-mannosylated Virulence Factors in Ustilago maydis. PLoS Pathogens, 2012, 8, e1002563.	4.7	48
4	The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes. PLoS Pathogens, 2015, 11, e1005134.	4.7	37
5	Chaperone-mediated ordered assembly of the SAGA and NuA4 transcription co-activator complexes in yeast. Nature Communications, 2019, 10, 5237.	12.8	33
6	Endoplasmic Reticulum Glucosidases and Protein Quality Control Factors Cooperate to Establish Biotrophy in <i>Ustilago maydis</i> /i>Â. Plant Cell, 2013, 25, 4676-4690.	6.6	27
7	New insights into the evolutionary conservation of the sole PIKK pseudokinase Tra1/TRRAP. Biochemical Society Transactions, 2019, 47, 1597-1608.	3.4	25
8	Protein glycosylation in the phytopathogen Ustilago maydis: From core oligosaccharide synthesis to the ER glycoprotein quality control system, a genomic analysis. Fungal Genetics and Biology, 2010, 47, 727-735.	2.1	14
9	Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genetics and Biology, 2019, 129, 52-64.	2.1	13
10	The Hsp90 cochaperone TTT promotes cotranslational maturation of PIKKs prior to complex assembly. Cell Reports, 2021, 37, 109867.	6.4	9
11	Nuclear ingression of cytoplasmic bodies accompanies a boost in autophagy. Life Science Alliance, 2022, 5, e202101160.	2.8	8
12	The requirement for protein <i>O-mannosylation</i> for <i>Ustilago maydis</i> virulence seems to be linked to intrinsic aspects of the infection process rather than an altered plant response. Plant Signaling and Behavior, 2010, 5, 412-414.	2.4	7
13	Histone deacetylases: revealing the molecular base of dimorphism in pathogenic fungi. Microbial Cell, 2015, 2, 491-493.	3.2	7
14	Quantitative analysis of protein-RNA interactions in fission yeast. STAR Protocols, 2022, 3, 101373.	1.2	0