Xiao-Ming Wen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1580247/xiao-ming-wen-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

162
papers6,471
citations46
h-index75
g-index188
ext. papers7,658
ext. citations8.2
avg, IF6.15
L-index

#	Paper	IF	Citations
162	InOOH-mediated intergrown heterojunctions for enhanced photocatalytic Performance: Assembly and interfacial charge carrier transferring. <i>Chemical Engineering Journal</i> , 2022 , 442, 136355	14.7	1
161	Controllable Acceleration and Deceleration of Charge Carrier Transport in Metal-Halide Perovskite Single-Crystal by Cs-Cation Induced Bandgap Engineering <i>Small</i> , 2022 , e2107680	11	1
160	Origin and physical effects of edge states in two-dimensional Ruddlesden-Popper perovskites. <i>IScience</i> , 2022 , 25, 104420	6.1	O
159	Lead-free metal-halide double perovskites: from optoelectronic properties to applications. <i>Nanophotonics</i> , 2021 , 10, 2181-2219	6.3	9
158	Ni2+ doping induced structural phase transition and photoluminescence enhancement of CsPbBr3. <i>AIP Advances</i> , 2021 , 11, 115008	1.5	2
157	A room temperature all-optical sensor based on two-dimensional SnS for highly sensitive and reversible NO sensing. <i>Journal of Hazardous Materials</i> , 2021 , 127813	12.8	6
156	Metal-Organic Framework Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO Reduction to CH. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8455	5-84 1 9	57
155	Free-standing ultra-thin Janus indium oxysulfide for ultrasensitive visible-light-driven optoelectronic chemical sensing. <i>Nano Today</i> , 2021 , 37, 101096	17.9	15
154	Intermediate phase-enhanced Ostwald ripening for the elimination of phase segregation in efficient inorganic CsPbIBr2 perovskite solar cells. <i>Science China Materials</i> , 2021 , 64, 2655-2666	7.1	4
153	The critical role of composition-dependent intragrain planar defects in the performance of MA1NFAxPbI3 perovskite solar cells. <i>Nature Energy</i> , 2021 , 6, 624-632	62.3	47
152	Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Time-Resolved Microspectroscopy <i>Small Methods</i> , 2021 , 5, e2000731	12.8	9
151	Photogenerated charge dynamics of CdS nanorods with spatially distributed MoS2 for photocatalytic hydrogen generation. <i>Chemical Engineering Journal</i> , 2021 , 420, 127709	14.7	22
150	A high-performance visible-light-driven all-optical switch enabled by ultra-thin gallium sulfide. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 3115-3121	7.1	2
149	Spectroscopic Insight into Efficient and Stable Hole Transfer at the Perovskite/Spiro-OMeTAD Interface with Alternative Additives. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 5752-5761	9.5	10
148	Layer number dependent exciton dissociation and carrier recombination in 2D Ruddlesden B opper halide perovskites. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 8966-8974	7.1	6
147	Self-assembled carbon dot-wrapped perovskites enable light trapping and defect passivation for efficient and stable perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7508-7521	13	8
146	Metal D rganic Framework Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4. <i>Angewandte Chemie</i> , 2021 , 133, 8536-8540	3.6	3

145	Manipulating the Fate of Charge Carriers with Tungsten Concentration: Enhancing Photoelectrochemical Water Oxidation of Bi WO. <i>Small</i> , 2021 , 17, e2102023	11	3
144	Manipulating the Fate of Charge Carriers with Tungsten Concentration: Enhancing Photoelectrochemical Water Oxidation of Bi2WO6 (Small 35/2021). <i>Small</i> , 2021 , 17, 2170183	11	O
143	Enhancing stability and luminescence quantum yield of CsPbBr3 quantum dots by embedded in borosilicate glass. <i>Journal of Alloys and Compounds</i> , 2021 , 874, 159962	5.7	9
142	Photophysics of 2D Organic-Inorganic Hybrid Lead Halide Perovskites: Progress, Debates, and Challenges. <i>Advanced Science</i> , 2021 , 8, 2001843	13.6	24
141	Revealing the Role of Methylammonium Chloride for Improving the Performance of 2D Perovskite Solar Cells. <i>ACS Applied Materials & Description</i> (2008) 12, 25980-25990	9.5	24
140	Determining In-Plane Carrier Diffusion in Two-Dimensional Perovskite Using Local Time-Resolved Photoluminescence. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 26384-26390	9.5	14
139	Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. <i>Nano Energy</i> , 2020 , 75, 104917	17.1	19
138	Efficient Energy Funnelling by Engineering the Bandgap of a Perovskite: Ffster Resonance Energy Transfer or Charge Transfer?. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 5963-5971	6.4	7
137	A pulse electrodeposited amorphous tunnel layer stabilises Cu2O for efficient photoelectrochemical water splitting under visible-light irradiation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5638-5646	13	53
136	Light-Induced Formation of MoOS Clusters on CdS Nanorods as Cocatalyst for Enhanced Hydrogen Evolution. <i>ACS Applied Materials & Evolution (Nature of Applied Materials & Applied & Applied Materials & Applied & Applied Materials & Applied & Applie</i>	9.5	51
135	Highly transparent and luminescent gel glass based on reabsorption-free gold nanoclusters. <i>Nanoscale</i> , 2020 , 12, 10781-10789	7.7	4
134	Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms. <i>Photonics Research</i> , 2020 , 8, A56	6	17
133	Visualizing the Impact of Light Soaking on Morphological Domains in an Operational Cesium Lead Halide Perovskite Solar Cell. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 136-143	6.4	10
132	Illumination-Induced Phase Segregation and Suppressed Solubility Limit in Br-Rich Mixed-Halide Inorganic Perovskites. <i>ACS Applied Materials & English (Materials & English (Materials & English)</i> 12, 38376-38385	9.5	15
131	An Emerging Lead-Free Double-Perovskite Cs2AgFeCl6:In Single Crystal. <i>Advanced Functional Materials</i> , 2020 , 30, 2002225	15.6	21
130	Tracking Dynamic Phase Segregation in Mixed-Halide Perovskite Single Crystals under Two-Photon Scanning Laser Illumination. <i>Small Methods</i> , 2019 , 3, 1900273	12.8	24
129	The Importance of the Interfacial Contact: Is Reduced Graphene Oxide Always an Enhancer in Photo(Electro)Catalytic Water Oxidation?. ACS Applied Materials & Interfaces, 2019, 11, 23125-2313	2 9.5	28
128	Triggering the Passivation Effect of Potassium Doping in Mixed-Cation Mixed-Halide Perovskite by Light Illumination. <i>Advanced Energy Materials</i> , 2019 , 9, 1901016	21.8	84

127	The Dominant Energy Transport Pathway in Halide Perovskites: Photon Recycling or Carrier Diffusion?. <i>Advanced Energy Materials</i> , 2019 , 9, 1900185	21.8	61
126	Transient Energy Reservoir in 2D Perovskites. <i>Advanced Optical Materials</i> , 2019 , 7, 1900971	8.1	33
125	The Dependence of Bi2MoO6 Photocatalytic Water Oxidation Capability on Crystal Facet Engineering. <i>ChemPhotoChem</i> , 2019 , 3, 1246-1253	3.3	11
124	The optical properties of CsPbBr-CsPbBr perovskite composites. <i>Nanoscale</i> , 2019 , 11, 14676-14683	7.7	26
123	LiTFSI-Free Spiro-OMeTAD-Based Perovskite Solar Cells with Power Conversion Efficiencies Exceeding 19%. <i>Advanced Energy Materials</i> , 2019 , 9, 1901519	21.8	46
122	Spatially Modulating the Fluorescence Color of Mixed-Halide Perovskite Nanoplatelets through Direct Femtosecond Laser Writing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 26017-26023	9.5	22
121	Long-Distance Ionic Diffusion in Cesium Lead Mixed Halide Perovskite Induced by Focused Illumination. <i>Chemistry of Materials</i> , 2019 , 31, 9049-9056	9.6	20
120	Exciton-Driven Chemical Sensors Based on Excitation-Dependent Photoluminescent Two-Dimensional SnS. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 42462-42468	9.5	24
119	2D Plasmonic Tungsten Oxide Enabled Ultrasensitive Fiber Optics Gas Sensor. <i>Advanced Optical Materials</i> , 2019 , 7, 1901383	8.1	37
118	External stokes shift of perovskite nanocrystals enlarged by photon recycling. <i>Applied Physics Letters</i> , 2019 , 114, 011906	3.4	26
117	Tunable Type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production. <i>Applied Catalysis B: Environmental</i> , 2019 , 244, 814-822	21.8	94
116	Improving the Photo-Oxidative Performance of BiMoO by Harnessing the Synergy between Spatial Charge Separation and Rational Co-Catalyst Deposition. <i>ACS Applied Materials & Deposition</i> , 10, 9342-9352	9.5	34
115	Dynamic study of the light soaking effect on perovskite solar cells by in-situ photoluminescence microscopy. <i>Nano Energy</i> , 2018 , 46, 356-364	17.1	37
114	Free charges versus excitons: photoluminescence investigation of InGaN/GaN multiple quantum well nanorods and their planar counterparts. <i>Nanoscale</i> , 2018 , 10, 5358-5365	7.7	12
113	Template-Free Synthesis of High-Yield Fe-Doped Cesium Lead Halide Perovskite Ultralong Microwires with Enhanced Two-Photon Absorption. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 4878-	-48 8 5	51
112	Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. <i>Chemical Engineering Journal</i> , 2018 , 353, 636-644	14.7	33
111	Role of Surface Recombination in Halide Perovskite Nanoplatelets. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 31586-31593	9.5	29
110	Slow Response of Carrier Dynamics in Perovskite Interface upon Illumination. <i>ACS Applied Materials</i> & Samp; Interfaces, 2018 , 10, 31452-31461	9.5	35

(2017-2018)

109	Universal passivation strategy to slot-die printed SnO for hysteresis-free efficient flexible perovskite solar module. <i>Nature Communications</i> , 2018 , 9, 4609	17.4	392
108	Illumination-Induced Halide Segregation in Gradient Bandgap Mixed-Halide Perovskite Nanoplatelets. <i>Advanced Optical Materials</i> , 2018 , 6, 1801107	8.1	23
107	Chemical Dopant Engineering in Hole Transport Layers for Efficient Perovskite Solar Cells: Insight into the Interfacial Recombination. <i>ACS Nano</i> , 2018 , 12, 10452-10462	16.7	50
106	Oxygen-deficient bismuth tungstate and bismuth oxide composite photoanode with improved photostability. <i>Science Bulletin</i> , 2018 , 63, 990-996	10.6	20
105	Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. <i>Nature Communications</i> , 2017 , 8, 14120	17.4	245
104	Spatial Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. <i>ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite</i> . <i>ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite</i> . <i>ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite</i> . <i>ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite</i> . <i>ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite</i> . <i>ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite</i> . <i>ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite</i> . <i>ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite</i> . <i>ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite</i> .	9.5	50
103	Nanoscale characterization of GaN/InGaN multiple quantum wells on GaN nanorods by photoluminescence spectroscopy 2017 ,		1
102	Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. <i>Nano Research</i> , 2017 , 10, 1673-1696	10	290
101	Nanosecond long excited state lifetimes observed in hafnium nitride. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 169, 13-18	6.4	15
100	Investigation of anti-solvent induced optical properties change of cesium lead bromide iodide mixed perovskite (CsPbBrI) quantum dots. <i>Journal of Colloid and Interface Science</i> , 2017 , 504, 586-592	9.3	22
99	Inverted Hysteresis in CHNHPbI Solar Cells: Role of Stoichiometry and Band Alignment. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 2672-2680	6.4	49
98	Difference in hot carrier cooling rate between Langmuir-Blodgett and drop cast PbS QD films due to strong electron-phonon coupling. <i>Nanoscale</i> , 2017 , 9, 17133-17142	7.7	10
97	Hot carrier transfer processes in nonstoichiometric titanium hydride. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 08MA10	1.4	2
96	A New Passivation Route Leading to Over 8% Efficient PbSe Quantum-Dot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals. <i>Advanced Materials</i> , 2017 , 29, 1703214	24	64
95	Consolidation of the optoelectronic properties of CHNHPbBr perovskite single crystals. <i>Nature Communications</i> , 2017 , 8, 590	17.4	164
94	Potential of HfN, ZrN, and TiH as hot carrier absorber and Al2O3/Ge quantum well/Al2O3and Al2O3/PbS quantum dots/Al2O3as energy selective contacts. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 08MA03	1.4	10
93	Light Illumination Induced Photoluminescence Enhancement and Quenching in Lead Halide Perovskite. <i>Solar Rrl</i> , 2017 , 1, 1600001	7.1	88
92	Significant Improvement in the Performance of PbSe Quantum Dot Solar Cell by Introducing a CsPbBr3 Perovskite Colloidal Nanocrystal Back Layer. <i>Advanced Energy Materials</i> , 2017 , 7, 1601773	21.8	43

91	Quantification of hot carrier thermalization in PbS colloidal quantum dots by power and temperature dependent photoluminescence spectroscopy. <i>RSC Advances</i> , 2016 , 6, 90846-90855	3.7	16
90	Interfacing BiVO with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet Dependence of Electron Shuttling. <i>Small</i> , 2016 , 12, 5295-5302	11	56
89	Nanoscale Characterization of Carrier Dynamic and Surface Passivation in InGaN/GaN Multiple Quantum Wells on GaN Nanorods. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 31887-31893	9.5	29
88	Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation. <i>Advanced Energy Materials</i> , 2016 , 6, 1502202	21.8	317
87	Hafnium nitride for hot carrier solar cells. Solar Energy Materials and Solar Cells, 2016, 144, 781-786	6.4	13
86	Ultrafast Carrier Dynamics in Methylammonium Lead Bromide Perovskite. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 2542-2547	3.8	42
85	Defect trapping states and charge carrier recombination in organicIhorganic halide perovskites. Journal of Materials Chemistry C, 2016 , 4, 793-800	7.1	136
84	BiVO4 {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1400-5	6.4	195
83	Time-resolved fluorescence anisotropy study of organic lead halide perovskite. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 151, 102-112	6.4	12
82	Mobile Ion Induced Slow Carrier Dynamics in Organic-Inorganic Perovskite CHNHPbBr[]ACS Applied Materials & Samp; Interfaces, 2016, 8, 5351-7	9.5	87
81	Hot carrier dynamics in HfN and ZrN measured by transient absorption spectroscopy. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 150, 51-56	6.4	12
80	Photoluminescence characterisations of a dynamic aging process of organic-inorganic CH3NH3PbBr3 perovskite. <i>Nanoscale</i> , 2016 , 8, 1926-31	7.7	47
79	Generation of hot carrier population in colloidal silicon quantum dots for high-efficiency photovoltaics. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 145, 391-396	6.4	15
78	Effect of a ZnS intermediate layer on properties of Cu2ZnSnS4 films from sputtered Zn/CuSn precursors on Si (100) substrate 2016 ,		1
77	Extended hot carrier lifetimes observed in bulk In0.265\(\text{H}0.02\)Ga0.735N under high-density photoexcitation. <i>Applied Physics Letters</i> , 2016 , 108, 131904	3.4	18
76	Observation of Hot Carriers Existing in Ag2S Nanoparticles and Its Implication on Solar Cell Application. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 10199-10205	3.8	10
75	Nucleation and Growth Control of HC(NH2)2PbI3 for Planar Perovskite Solar Cell. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 11262-11267	3.8	74
74	Electric field induced reversible and irreversible photoluminescence responses in methylammonium lead iodide perovskite. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9060-9068	7.1	61

73	Optical Probe Ion and Carrier Dynamics at the CH3NH3PbI3 Interface with Electron and Hole Transport Materials. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600467	4.6	18	
72	Photocatalysis: Interfacing BiVO4 with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet Dependence of Electron Shuttling (Small 38/2016). <i>Small</i> , 2016 , 12, 5232-5232	11		
71	Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol-Gel and Selenization Process. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 14376-83	9.5	67	•
70	Mobile Charge-Induced Fluorescence Intermittency in Methylammonium Lead Bromide Perovskite. <i>Nano Letters</i> , 2015 , 15, 4644-9	11.5	97	
69	Effect of Halide Treatments on PbSe Quantum Dot Thin Films: Stability, Hot Carrier Lifetime, and Application to Photovoltaics. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 24149-24155	3.8	38	
68	Enhanced Visible Light-Induced Charge Separation and Charge Transport in Cu2O-Based Photocathodes by Urea Treatment. <i>ACS Applied Materials & Discrete Applied & D</i>	9.5	25	
67	Kesterite Cu2ZnSnS4 thin film solar cells by a facile DMF-based solution coating process. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10783-10792	7.1	52	
66	Theoretical and Experimental Investigation of the Electronic Structure and Quantum Confinement of Wet-Chemistry Synthesized Ag2S Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 867-872	3.8	49	
65	Fluorescent Metallic Nanoclusters: Electron Dynamics, Structure, and Applications. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 142-163	3.1	65	
64	Study on the Ultrafast Carrier Dynamics in the Bulk In0.265GaN Thin Film. <i>Energy Procedia</i> , 2015 , 84, 16	55 <u>2</u> 1375	3	
63	Tunability Limit of Photoluminescence in Colloidal Silicon Nanocrystals. Scientific Reports, 2015, 5, 1240	59 4.9	53	
62	Effects of blend composition on the morphology of Si-PCPDTBT:PC71BM bulk heterojunction organic solar cells. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 1931-1940	1.6	8	
61	Characterization of a Cu2ZnSnS4 solar cell fabricated by sulfurization of metallic precursor Mo/Zn/Cu/Sn. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 2074-2079	1.6	5	
60	Improving Efficiency of Evaporated Cu2ZnSnS4Thin Film Solar Cells by a Thin Ag Intermediate Layer between Absorber and Back Contact. <i>International Journal of Photoenergy</i> , 2015 , 2015, 1-9	2.1	26	
59	Introducing a protective interlayer of TiO2 in Cu2OជែuO heterojunction thin film as a highly stable visible light photocathode. <i>RSC Advances</i> , 2015 , 5, 5231-5236	3.7	49	
58	Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition. Journal of Physical Chemistry C, 2015 , 119, 3545-3549	3.8	195	
57	Radio frequency magnetron sputtered highly textured Cu2ZnSnS4 thin films on sapphire (0 0 0 1) substrates. <i>Journal of Alloys and Compounds</i> , 2015 , 632, 53-58	5.7	9	
	Sessification south at the compount of the com			,

55	Morphology and Carrier Extraction Study of Organic-Inorganic Metal Halide Perovskite by One- and Two-Photon Fluorescence Microscopy. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3849-53	6.4	80
54	Ultrafast electron transfer in the nanocomposite of the graphene oxideAu nanocluster with graphene oxide as a donor. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3826-3834	7.1	71
53	Performance improvement of low bandgap polymer bulk heterojunction solar cells by incorporating P3HT. <i>Organic Electronics</i> , 2014 , 15, 2837-2846	3.5	15
52	On the upconversion fluorescence in carbon nanodots and graphene quantum dots. <i>Chemical Communications</i> , 2014 , 50, 4703-6	5.8	120
51	Dynamic study on the transformation process of gold nanoclusters. <i>Nanotechnology</i> , 2014 , 25, 445705	3.4	6
50	Evaluation of hafnium nitride and zirconium nitride as Hot Carrier absorber 2014 ,		5
49	Evidence for a large phononic band gap leading to slow hot carrier thermalisation. <i>IOP Conference Series: Materials Science and Engineering</i> , 2014 , 68, 012002	0.4	9
48	Numerical calculation of optical phonon decay rate in InN/GaN MQW. <i>IOP Conference Series:</i> Materials Science and Engineering, 2014 , 68, 012009	0.4	5
47	Optical properties of gold particle-cluster coreBatellite nanoassemblies. RSC Advances, 2013, 3, 19609	3.7	12
46	Singlet and Triplet Carrier Dynamics in Rubrene Single Crystal. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 17741-17747	3.8	19
45	Fluorescence origin and spectral broadening mechanism in atomically precise Au8 nanoclusters. <i>Nanoscale</i> , 2013 , 5, 10251-7	7.7	18
44	Induced pH-dependent shift by local surface plasmon resonance in functionalized gold nanorods. <i>Nanoscale Research Letters</i> , 2013 , 8, 103	5	10
43	Metallophilic Bond-Induced Quenching of Delayed Fluorescence in Au25@BSA Nanoclusters. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 467-472	3.1	28
42	Photoinduced Ultrafast Charge Separation in Plexcitonic CdSe/Au and CdSe/Pt Nanorods. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 3596-3601	6.4	77
41	Confined Au-Pd Ensembles in Mesoporous TiO2 Spheres for the Photocatalytic Oxidation of Acetaldehyde. <i>ChemCatChem</i> , 2013 , 5, 3557-3561	5.2	17
40	The enhancement of electron-phonon coupling in glutathione-protected Au25 clusters. <i>Journal of Colloid and Interface Science</i> , 2013 , 402, 86-9	9.3	10
39	Quantum Confined Stark Effect in Au8 and Au25 Nanoclusters. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 3621-3626	3.8	23
38	Intrinsic and Extrinsic Fluorescence in Carbon Nanodots: Ultrafast Time-Resolved Fluorescence and Carrier Dynamics. <i>Advanced Optical Materials</i> , 2013 , 1, 173-178	8.1	126

Heterogeneous nano-particle array for the realization of the hot carrier solar cell 2013, 2 37 36 Temperature-Dependent Fluorescence in Carbon Dots. Journal of Physical Chemistry C, 2012, 116, 2555232557321 Studies of the photostability of CdSe/CdS dot-in-rod nanoparticles. Journal of Nanoparticle 2.3 10 35 Research, 2012, 14, 1 Temperature dependent spectral properties of type-I and quasi type-II CdSe/CdS dot-in-rod 3.6 34 44 nanocrystals. Physical Chemistry Chemical Physics, 2012, 14, 3505-12 Structure-Correlated Dual Fluorescent Bands in BSA-Protected Au25 Nanoclusters. Journal of 3.8 85 33 Physical Chemistry C, 2012, 116, 11830-11836 Fluorescence Dynamics in BSA-Protected Au25 Nanoclusters. Journal of Physical Chemistry C, 2012, 3.8 32 99 116, 19032-19038 Temperature-Dependent Fluorescence in Au10 Nanoclusters. Journal of Physical Chemistry C, 2012, 3.8 31 71 116, 6567-6571 Near-infrared enhanced carbon nanodots by thermally assisted growth. Applied Physics Letters, 30 29 3.4 2012, 101, 163107 A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers. Nanotechnology, 2011, 29 3.4 74 22, 455203 Observation of back-surface reflected luminescence in GaAs excited by ultrashort pulses. Applied 28 3.4 Physics Letters, 2009, 94, 102101 Characterization of the back surface reflection in InP using femtosecond luminescence 27 3 up-conversion. Journal Physics D: Applied Physics, 2009, 42, 045115 Thermal quenching of photoluminescence in ZnO/ZnMgO multiple quantum wells following oxygen 26 3.8 implantation and rapid thermal annealing. Journal of Luminescence, 2009, 129, 153-157 Synthesis, photophysical, and device properties of novel dendrimers based on a 6.2 25 43 fluorene-hexabenzocoronene (FHBC) core. Organic Letters, 2009, 11, 975-8 Ultrafast transient grating spectroscopy in silicon quantum dots. Journal of Nanoscience and 24 1.3 Nanotechnology, **2009**, 9, 4575-9 Suppression of the internal electric field effects in ZnO/Zn(0.7)Mg(0.3)O quantum wells by 26 23 3.4 ion-implantation induced intermixing. Nanotechnology, 2008, 19, 055205 Electron dynamics in modulation p-doped InGaAs/GaAs quantum dots. European Physical Journal B, 22 1.2 2008, 62, 65-70 Two-photon optical characteristics of zinc oxide in bulk, low dimensional and nanoforms. Journal of 21 3.8 12 Luminescence, 2007, 126, 641-643 Femtosecond two-color three-pulse photon echoes for studying dephasing in silicon quantum dots. 20 2.1 2 Journal of Materials Science: Materials in Electronics, 2007, 18, 305-308

19	Temperature dependence of photoluminescence in silicon quantum dots. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 3573-3578	3	63
18	The state filling effect in p-doped InGaAs/GaAs quantum dots. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 386213	1.8	13
17	Ultrafast dynamics in ZnO/ZnMgO multiple quantum wells. <i>Nanotechnology</i> , 2007 , 18, 315403	3.4	8
16	Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnOInMgO multiple quantum wells. <i>Applied Physics Letters</i> , 2007 , 90, 221914	3.4	20
15	Excitation dependence of photoluminescence in silicon quantum dots. <i>New Journal of Physics</i> , 2007 , 9, 337-337	2.9	16
14	Carrier dynamics in p-type InGaAs/GaAs quantum dots. <i>Journal of Materials Science: Materials in Electronics</i> , 2007 , 18, 363-365	2.1	3
13	Observation of coherent biexcitons in ZnOInMgO multiple quantum wells at room temperature. <i>Applied Physics Letters</i> , 2006 , 89, 182109	3.4	14
12	Proton irradiation-induced intermixing in InxGa1\(\text{InP}\) quantum wells\(\text{Ihe}\) effect of In composition. Semiconductor Science and Technology, 2006, 21, 1441-1446	1.8	5
11	Time-resolved and time-integrated photoluminescence analysis of state filling and quantum confinement of silicon quantum dots. <i>Journal of Applied Physics</i> , 2005 , 97, 013501	2.5	26
10	Characterization of enhanced emission from excimer laser treated ZnO ceramics using one- and two-photon luminescence spectroscopy and microscopy. <i>Journal of Luminescence</i> , 2004 , 106, 1-7	3.8	7
9	Confocal two-photon spectroscopy of red mercuric iodide. <i>Applied Physics Letters</i> , 2003 , 83, 425-427	3.4	11
8	The kinetics of exciton photoluminescence in mercuric iodide. <i>Journal of Physics and Chemistry of Solids</i> , 2002 , 63, 2107-2113	3.9	3
7	Time-resolved photoluminescence of red mercuric iodide. <i>Journal of Applied Physics</i> , 2002 , 91, 4095-410	00 .5	3
6	TIME-RESOLVED PHOTOLUMINESCENCE OF EXCITONS IN HgI2. <i>International Journal of Modern Physics B</i> , 2001 , 15, 3920-3923	1.1	4
5	Time-resolved photoluminescence of sintered ZnO ceramics. <i>Chinese Physics B</i> , 2001 , 10, 874-876		6
4	Improving Hole Transport and Extraction by Interface Engineering in Perovskite Solar Cells. <i>Energy Technology</i> ,2101002	3.5	O
3	Energy Funneling in Quasi-2D Ruddlesden P opper Perovskites: Charge Transfer versus Resonant Energy Transfer. <i>Advanced Photonics Research</i> ,2100283	1.9	0
2	Linking Phase Segregation and Photovoltaic Performance of Mixed-Halide Perovskite Films through Grain Size Engineering. <i>ACS Energy Letters</i> ,1649-1658	20.1	15

Self-Assembled Perovskite Nanoislands on CH3NH3PbI3 Cuboid Single Crystals by Energetic Surface Engineering. *Advanced Functional Materials*,2105542

15.6 3