Wen-Yi Huo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1579977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Materials and Design, 2017, 134, 226-233.	7.0	183
2	Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys. Journal of Alloys and Compounds, 2018, 735, 897-904.	5.5	136
3	Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2022, 313, 121472.	20.2	107
4	High entropy alloy/C nanoparticles derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction. Chemical Engineering Journal, 2022, 429, 132410.	12.7	84
5	Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 366-369.	5.6	74
6	Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures. Scripta Materialia, 2017, 141, 125-128.	5.2	74
7	Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films. Applied Surface Science, 2018, 439, 222-225.	6.1	74
8	Recent progress on high-entropy materials for electrocatalytic water splitting applications. Tungsten, 2021, 3, 161-180.	4.8	60
9	Mechanical, electronic and optical properties of a novel B ₂ P ₆ monolayer: ultrahigh carrier mobility and strong optical absorption. Physical Chemistry Chemical Physics, 2021, 23, 24915-24921.	2.8	46
10	Preferentially oriented Ag-TiO2 nanotube array film: An efficient visible-light-driven photocatalyst. Journal of Hazardous Materials, 2020, 399, 123016.	12.4	36
11	Tuning electronic, magnetic and catalytic behaviors of biphenylene network by atomic doping. Nanotechnology, 2022, 33, 345701.	2.6	34
12	Electronic and Optical Properties of Atomic-Scale Heterostructure Based on MXene and MN (M = Al,) Tj ETQq0 0	0 rgBT /O	verlgck 10 T
13	Fatigue resistance of nanotwinned high-entropy alloy films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 26-30.	5.6	32
14	Single-crystal-like black Zr-TiO2 nanotube array film: An efficient photocatalyst for fast reduction of Cr(VI). Chemical Engineering Journal, 2021, 403, 126331.	12.7	30
15	Phase formation prediction of high-entropy alloys: a deep learning study. Journal of Materials Research and Technology, 2022, 18, 800-809.	5.8	29
16	Microstructure and Wear Behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding. Advances in Materials Science and Engineering, 2015, 2015, 1-5.	1.8	28
17	Electronic and optical properties of two-dimensional heterostructures based on Janus XSSe (X = Mo,) Tj ETQq1 1	0.784314	+ rgBT /Over

Prediction of 2D IV–VI semiconductors: auxetic materials with direct bandgap and strong optical absorption. Nanoscale, 2022, 14, 8463-8473.

5.6 21

Wen-Yi Huo

#	Article	IF	CITATIONS
19	Stacking-Mediated Type-I/Type-II Transition in Two-Dimensional MoTe2/PtS2 Heterostructure: A First-Principles Simulation. Crystals, 2022, 12, 425.	2.2	17
20	Remarkable strain-rate sensitivity of nanotwinned CoCrFeNi alloys. Applied Physics Letters, 2019, 114, 101904.	3.3	16
21	A strategy to improve the performance of TiO2 nanotube array film photocatalysts by magnetron-sputtered amorphous BiFeO3. Vacuum, 2022, 202, 111135.	3.5	12
22	Mechanical size effect of eutectic high entropy alloy: Effect of lamellar orientation. Journal of Materials Science and Technology, 2021, 82, 10-20.	10.7	8