
Jue Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1579967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MoSe ₂ /Nâ€Doped Carbon as Anodes for Potassiumâ€ŀon Batteries. Advanced Energy Materials, 2018, 8, 1801477.	10.2	391
2	A Nonaqueous Potassiumâ€Based Battery–Supercapacitor Hybrid Device. Advanced Materials, 2018, 30, e1800804.	11.1	345
3	An Ultrafast and Highly Stable Potassium–Organic Battery. Advanced Materials, 2018, 30, e1805486.	11.1	255
4	Nature of FeSe ₂ /N Anode for High Performance Potassium Ion Hybrid Capacitor. Advanced Energy Materials, 2020, 10, 1903277.	10.2	225
5	Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor. Journal of Energy Chemistry, 2020, 43, 129-138.	7.1	213
6	<i>In Situ</i> Alloying Strategy for Exceptional Potassium Ion Batteries. ACS Nano, 2019, 13, 3703-3713.	7.3	194
7	Ultrastable Potassium Storage Performance Realized by Highly Effective Solid Electrolyte Interphase Layer. Small, 2018, 14, e1801806.	5.2	175
8	Carbon Nanoscrolls for Aluminum Battery. ACS Nano, 2018, 12, 8456-8466.	7.3	165
9	Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochimica Acta, 2019, 293, 364-370.	2.6	162
10	An Ultrafast Rechargeable Hybrid Sodiumâ€Based Dualâ€Ion Capacitor Based on Hard Carbon Cathodes. Advanced Energy Materials, 2018, 8, 1800140.	10.2	129
11	Insight into the Mechanism of Axial Ligands Regulating the Catalytic Activity of Fe–N ₄ Sites for Oxygen Reduction Reaction. Advanced Energy Materials, 2022, 12, .	10.2	124
12	Control of SEI Formation for Stable Potassium-Ion Battery Anodes by Bi-MOF-Derived Nanocomposites. ACS Applied Materials & Interfaces, 2019, 11, 22474-22480.	4.0	117
13	Graphene Armored with a Crystal Carbon Shell for Ultrahigh-Performance Potassium Ion Batteries and Aluminum Batteries. ACS Nano, 2019, 13, 10631-10642.	7.3	98
14	High performance bimetal sulfides for lithium-sulfur batteries. Chemical Engineering Journal, 2019, 358, 955-961.	6.6	98
15	Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries. Science Bulletin, 2020, 65, 1242-1251.	4.3	96
16	Carbon Dots@rGO Paper as Freestanding and Flexible Potassiumâ€lon Batteries Anode. Advanced Science, 2020, 7, 2000470.	5.6	95
17	Nature of Novel 2D van der Waals Heterostructures for Superior Potassium Ion Batteries. Advanced Energy Materials, 2020, 10, 2000884.	10.2	85
18	Semimetallic vanadium molybdenum sulfide for high-performance battery electrodes. Journal of Materials Chemistry A, 2018, 6, 9411-9419.	5.2	73

JUE WANG

#	Article	IF	CITATIONS
19	Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy Storage Materials, 2018, 15, 361-367.	9.5	73
20	Confined and covalent sulfur for stable room temperature potassium-sulfur battery. Electrochimica Acta, 2019, 293, 191-198.	2.6	68
21	Gold Nanorod-Enhanced Light Absorption and Photoelectrochemical Performance of α-Fe ₂ O ₃ Thin-Film Electrode for Solar Water Splitting. Journal of Physical Chemistry C, 2013, 117, 22060-22068.	1.5	65
22	Unzipped carbon nanotubes for aluminum battery. Energy Storage Materials, 2019, 23, 72-78.	9.5	64
23	Accessible COF-Based Functional Materials for Potassium-Ion Batteries and Aluminum Batteries. ACS Applied Materials & Interfaces, 2019, 11, 44352-44359.	4.0	62
24	TiO2 quantum dots decorated multi-walled carbon nanotubes as the multifunctional separator for highly stable lithium sulfur batteries. Electrochimica Acta, 2018, 284, 314-320.	2.6	61
25	Nature of Bimetallic Oxide Sb ₂ MoO ₆ /rGO Anode for Highâ€Performance Potassiumâ€ion Batteries. Advanced Science, 2019, 6, 1900904.	5.6	60
26	Rapidly synthesizing interconnected carbon nanocage by microwave toward high-performance aluminum batteries. Chemical Engineering Journal, 2020, 389, 124407.	6.6	52
27	A Facile Electrochemical Reduction Method for Improving Photocatalytic Performance of α-Fe ₂ O ₃ Photoanode for Solar Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 381-390.	4.0	51
28	Free-standing N-doped hollow carbon fibers as high-performance anode for potassium ion batteries. Science China Materials, 2021, 64, 547-556.	3.5	45
29	Sn-Sb compounds with novel structure for stable potassium storage. Chemical Engineering Journal, 2020, 395, 125147.	6.6	41
30	Excellent Thermoelectric Properties in monolayer WSe2 Nanoribbons due to Ultralow Phonon Thermal Conductivity. Scientific Reports, 2017, 7, 41418.	1.6	36
31	Domainâ€Confined Etching Strategy to Regulate Defective Sites in Carbon for Highâ€Efficiency Electrocatalytic Oxygen Reduction. Advanced Functional Materials, 2022, 32, .	7.8	33
32	Low Cost and Superior Safety Industrial Grade Lithium Dualâ€lon Batteries with a Second Life. Energy Technology, 2018, 6, 1994-2000.	1.8	29
33	Highly Conductive Nanostructured C-TiO ₂ Electrodes with Enhanced Electrochemical Stability and Double Layer Charge Storage Capacitance. Langmuir, 2012, 28, 10610-10619.	1.6	28
34	Defect engineering of molybdenum disulfide for energy storage. Materials Chemistry Frontiers, 2021, 5, 5880-5896.	3.2	25
35	Insights into Metal/Metalloid-Based Alloying Anodes for Potassium Ion Batteries. , 2021, 3, 1572-1598.		25
36	Electronâ€Deficient Sites for Improving V ²⁺ /V ³⁺ Redox Kinetics in Vanadium Redox Flow Batteries. Advanced Functional Materials, 2022, 32, .	7.8	25

JUE WANG

#	Article	IF	CITATIONS
37	Rapid Screening of Photoanode Materials Using Scanning Photoelectrochemical Microscopy Technique and Formation of Z-Scheme Solar Water Splitting System by Coupling p- and n-type Heterojunction Photoelectrodes. ACS Applied Energy Materials, 2018, 1, 2283-2294.	2.5	24
38	Dual Substitution Strategy in Co-Free Layered Cathode Materials for Superior Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 18733-18742.	4.0	24
39	Nature of bismuth and antimony based phosphate nanobundles/graphene for superior potassium ion batteries. Chemical Engineering Journal, 2022, 435, 134746.	6.6	18
40	Facilitating Phase Evolution for a High-Energy-Efficiency, Low-Cost O3-Type Na _{<i>x</i>} Cu _{0.18} Fe _{0.3} Mn _{0.52} O ₂ Sodium Ion Battery Cathode. Inorganic Chemistry, 2020, 59, 13792-13800.	1.9	15
41	Non-precious transition metal based electrocatalysts for vanadium redox flow batteries: Rational design and perspectives. Journal of Power Sources, 2021, 515, 230640.	4.0	15
42	Reversible K _{0.54} V ₂ O ₅ Nanorods for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1656-1661.	2.5	14
43	Nitrogen-doped carbon with high graphitic-N exposure for electroreduction of CO2 to CO. lonics, 2021, 27, 3089-3098.	1.2	12
44	Electrodeposition of vertically standing Ag nanoplates and nanowires on transparent conductive electrode using porous anodic aluminum oxide template. Nanotechnology, 2017, 28, 425601.	1.3	11
45	Micro-sized porous silicon@PEDOT with high rate capacity and stability for Li-ion battery anode. Materials Letters, 2021, 293, 129712.	1.3	11
46	Boosting the performance of positive electrolyte for VRFB by employing zwitterion molecule containing sulfonic and pyridine groups as the additive. Ionics, 2020, 26, 3147-3159.	1.2	10
47	Bimetal–organic-framework derived CoTiO3/C hexagonal micro-prisms as high-performance anode materials for metal ion batteries. Materials Chemistry Frontiers, 2021, 5, 5760-5768.	3.2	10
48	Polyacrylonitrile Derived Porous Carbon for Zincâ€lon Hybrid Capacitors with High Energy Density. ChemElectroChem, 2021, 8, 3572-3578.	1.7	9
49	Fe induction strategy for hollow porous N-doped carbon with superior performance in oxygen reduction. Chemical Communications, 2021, 57, 7108-7111.	2.2	7
50	SnSe coupled with nitrogen/sulfur dual-doped rGO for superior anode of lithium ion batteries. Ionics, 2021, 27, 3801-3809.	1.2	7
51	A facile template-free electrodeposition method for vertically standing nanorods on conductive substrates and their applications for photoelectrochemical catalysis. International Journal of Hydrogen Energy, 2017, 42, 8462-8474.	3.8	6
52	Metal-Complex-Assisted Synthesis of SnSe Nanorods for Lithium-Ion-Battery Anodes. ACS Applied Nano Materials, 2021, 4, 13010-13017.	2.4	6
53	Self-standing reduced graphene oxide/Nb2C MXene paper electrode with three-dimensional open structure for high-rate potassium ion storage. Journal of Physics and Chemistry of Solids, 2022, 169, 110838.	1.9	5
54	Thermoelectric Performance Enhanced by Destructive Quantum Interference in Nanoporous Carbon Nanotube Based Junctions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100400.	1.2	3