Paul Petrus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1579738/publications.pdf

Version: 2024-02-01

		1051969	1255698
13	534	10	13
papers	citations	h-index	g-index
14 all docs	14 docs citations	14 times ranked	1188 citing authors

#	Article	IF	Citations
1	The central clock suffices to drive the majority of circulatory metabolic rhythms. Science Advances, 2022, 8, .	4.7	11
2	The impact of dietary fatty acids on human adipose tissue. Proceedings of the Nutrition Society, 2020, 79, 42-46.	0.4	10
3	Glutamine Links Obesity to Inflammation in Human White Adipose Tissue. Cell Metabolism, 2020, 31, 375-390.e11.	7.2	128
4	Epigenetic Programming of Adipose Tissue in the Progeny of Obese Dams. Current Genomics, 2019, 20, 428-437.	0.7	5
5	Adipocyte Expression of SLC19A1 Links DNA Hypermethylation to Adipose Tissue Inflammation and Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 710-721.	1.8	29
6	Screening of potential adipokines identifies \$100A4 as a marker of pernicious adipose tissue and insulin resistance. International Journal of Obesity, 2018, 42, 2047-2056.	1.6	24
7	Transforming Growth Factor-Î ² 3 Regulates Adipocyte Number in Subcutaneous White Adipose Tissue. Cell Reports, 2018, 25, 551-560.e5.	2.9	68
8	Transgenerational Epigenetic Mechanisms in Adipose Tissue Development. Trends in Endocrinology and Metabolism, 2018, 29, 675-685.	3.1	32
9	Epigenetic Regulation of PLIN 1 in Obese Women and its Relation to Lipolysis. Scientific Reports, 2017, 7, 10152 .	1.6	19
10	Adipose and Circulating CCL18 Levels Associate With Metabolic Risk Factors in Women. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4021-4029.	1.8	32
11	Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness. Scientific Reports, 2016, 6, 28080.	1.6	42
12	Saturated fatty acids in human visceral adipose tissue are associated with increased 11- $\hat{1}^2$ -hydroxysteroid-dehydrogenase type 1 expression. Lipids in Health and Disease, 2015, 14, 42.	1.2	23
13	Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. American Journal of Clinical Nutrition, 2015, 102-20-30	2.2	110