Hiro Furukawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1579477/publications.pdf Version: 2024-02-01

ΗΙΡΟ ΕΠΡΗΚΑΝΙΑ

#	Article	IF	CITATIONS
1	Crystal structure of a heterotetrameric NMDA receptor ion channel. Science, 2014, 344, 992-997.	12.6	500
2	Structure, function, and allosteric modulation of NMDA receptors. Journal of General Physiology, 2018, 150, 1081-1105.	1.9	363
3	Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature, 2011, 475, 249-253.	27.8	302
4	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	16.0	237
5	Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature, 2016, 534, 63-68.	27.8	173
6	Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO Journal, 2009, 28, 3910-3920.	7.8	171
7	The Cryo-EM structure of pannexin 1 reveals unique motifs for ion selection and inhibition. ELife, 2020, 9, .	6.0	103
8	Control of Assembly and Function of Glutamate Receptors by the Amino-Terminal Domain. Molecular Pharmacology, 2010, 78, 535-549.	2.3	95
9	Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nature Communications, 2011, 2, 294.	12.8	78
10	Structural Determinants of Agonist Efficacy at the Glutamate Binding Site of <i>N</i> -Methyl-d-Aspartate Receptors. Molecular Pharmacology, 2013, 84, 114-127.	2.3	76
11	Structural Insights into Competitive Antagonism in NMDA Receptors. Neuron, 2014, 81, 366-378.	8.1	75
12	A structural biology perspective on NMDA receptor pharmacology and function. Current Opinion in Structural Biology, 2015, 33, 68-75.	5.7	70
13	Molecular Basis for Subtype Specificity and High-Affinity Zinc Inhibition in the GluN1-GluN2A NMDA Receptor Amino-Terminal Domain. Neuron, 2016, 92, 1324-1336.	8.1	70
14	Structural Determinants and Mechanism of Action of a GluN2C-selective NMDA Receptor Positive Allosteric Modulator. Molecular Pharmacology, 2014, 86, 548-560.	2.3	69
15	Structural Basis of Functional Transitions in Mammalian NMDA Receptors. Cell, 2020, 182, 357-371.e13.	28.9	66
16	Emerging structural insights into the function of ionotropic glutamate receptors. Trends in Biochemical Sciences, 2015, 40, 328-337.	7.5	64
17	Structural Mechanism of Functional Modulation by Gene Splicing in NMDA Receptors. Neuron, 2018, 98, 521-529.e3.	8.1	57
18	Structural Mechanism for Modulation of Synaptic Neuroligin-Neurexin Signaling by MDGA Proteins. Neuron, 2017, 95, 896-913.e10.	8.1	55

Hiro Furukawa

#	Article	IF	CITATIONS
19	Role of heterotrimeric Gα proteins in maize development and enhancement of agronomic traits. PLoS Genetics, 2018, 14, e1007374.	3.5	55
20	Structure and assembly of calcium homeostasis modulator proteins. Nature Structural and Molecular Biology, 2020, 27, 150-159.	8.2	55
21	Mapping the Binding of GluN2B-Selective <i>N</i> -Methyl-d-aspartate Receptor Negative Allosteric Modulators. Molecular Pharmacology, 2012, 82, 344-359.	2.3	44
22	On the molecular nature of large-pore channels. Journal of Molecular Biology, 2021, 433, 166994.	4.2	44
23	Divergent roles of a peripheral transmembrane segment in AMPA and NMDA receptors. Journal of General Physiology, 2017, 149, 661-680.	1.9	41
24	Dissecting diverse functions of NMDA receptors by structural biology. Current Opinion in Structural Biology, 2019, 54, 34-42.	5.7	37
25	Structure and function of glutamate receptor amino terminal domains. Journal of Physiology, 2012, 590, 63-72.	2.9	35
26	Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Nature Communications, 2019, 10, 321.	12.8	32
27	A Eukaryotic Specific Transmembrane Segment is Required for Tetramerization in AMPA Receptors. Journal of Neuroscience, 2013, 33, 9840-9845.	3.6	31
28	Novel Mode of Antagonist Binding in NMDA Receptors Revealed by the Crystal Structure of the GluN1-GluN2A Ligand-Binding Domain Complexed to NVP-AAM077. Molecular Pharmacology, 2017, 92, 22-29.	2.3	27
29	Hodgkin–Huxley–Katz Prize Lecture: Genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. Journal of Physiology, 2020, 598, 3071-3083.	2.9	23
30	Structural insights into binding of therapeutic channel blockers in NMDA receptors. Nature Structural and Molecular Biology, 2022, 29, 507-518.	8.2	21
31	Structural basis of subtype-selective competitive antagonism for GluN2C/2D-containing NMDA receptors. Nature Communications, 2020, 11, 423.	12.8	19
32	Development and characterization of functional antibodies targeting NMDA receptors. Nature Communications, 2022, 13, 923.	12.8	11
33	Effective production of oligomeric membrane proteins by EarlyBac-insect cell system. Methods in Enzymology, 2021, 653, 3-19.	1.0	7
34	Deeper Insights into the Allosteric Modulation of Ionotropic Glutamate Receptors. Neuron, 2016, 91, 1187-1189.	8.1	2
35	Production of Heteromeric Transmembrane Receptors with Defined Subunit Stoichiometry. Structure, 2016, 24, 653-655.	3.3	1