
Eduardo Coutino-Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1579066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Fluorescence in Heat-Treated Silver-Exchanged Zeolites. Journal of the American Chemical Society, 2009, 131, 3049-3056.	13.7	170
2	Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nature Materials, 2016, 15, 1017-1022.	27.5	153
3	Origin of the bright photoluminescence of few-atom silver clusters confined in LTA zeolites. Science, 2018, 361, 686-690.	12.6	134
4	Selfâ€Assembled Organic Microfibers for Nonlinear Optics. Advanced Materials, 2013, 25, 2084-2089.	21.0	119
5	Optical Encoding of Silver Zeolite Microcarriers. Advanced Materials, 2010, 22, 957-960.	21.0	115
6	Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup. Review of Scientific Instruments, 2014, 85, 123115.	1.3	96
7	Aggregation Induced Enhancement of Linear and Nonlinear Optical Emission from a Hexaphenylene Derivative. Advanced Functional Materials, 2016, 26, 8968-8977.	14.9	77
8	Silver Clusters in Zeolites: From Self-Assembly to Ground-Breaking Luminescent Properties. Accounts of Chemical Research, 2017, 50, 2353-2361.	15.6	72
9	Thermally activated LTA(Li)–Ag zeolites with water-responsive photoluminescence properties. Journal of Materials Chemistry C, 2015, 3, 11857-11867.	5.5	70
10	Synthesis and photophysical characterization of chalcogen substituted BODIPY dyes. New Journal of Chemistry, 2009, 33, 1490.	2.8	69
11	Determination and Optimization of the Luminescence External Quantum Efficiency of Silver-Clusters Zeolite Composites. Journal of Physical Chemistry C, 2013, 117, 6998-7004.	3.1	64
12	Direct Observation of Luminescent Silver Clusters Confined in Faujasite Zeolites. ACS Nano, 2016, 10, 7604-7611.	14.6	58
13	In Situ Observation of the Emission Characteristics of Zeoliteâ€Hosted Silver Species During Heat Treatment. ChemPhysChem, 2010, 11, 1627-1631.	2.1	52
14	X-ray irradiation-induced formation of luminescent silver clusters in nanoporous matrices. Chemical Communications, 2014, 50, 1350-1352.	4.1	49
15	Enhanced Luminescence and Mechanistic Studies on Layered Double-Perovskite Phosphors: Cs ₄ Cd _{1–<i>x</i>} Mn _{<i>x</i>} Bi ₂ Cl ₁₂ . Chemistry of Materials, 2020, 32, 9307-9315.	6.7	43
16	Atomic scale reversible opto-structural switching of few atom luminescent silver clusters confined in LTA zeolites. Nanoscale, 2018, 10, 11467-11476.	5.6	40
17	Controlling Microsized Polymorphic Architectures with Distinct Linear and Nonlinear Optical Properties. Advanced Optical Materials, 2015, 3, 948-956.	7.3	39
18	The earthworm Eisenia fetida accelerates the removal of anthracene and 9, 10-anthraquinone, the most abundant degradation product, in soil. International Biodeterioration and Biodegradation, 2010, 64, 525-529.	3.9	31

#	Article	IF	CITATIONS
19	Silver Zeolite Compositesâ€Based LEDs: A Novel Solidâ€State Lighting Approach. Advanced Functional Materials, 2017, 27, 1606411.	14.9	30
20	Photocatalytic Hydrogen Evolution by Flexible Graphene Composites Decorated with Ni(OH) ₂ Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 1477-1485.	3.1	30
21	Shaping the Optical Properties of Silver Clusters Inside Zeolite A via Guest–Host–Guest Interactions. Journal of Physical Chemistry Letters, 2018, 9, 5344-5350.	4.6	28
22	Efficient Emission in Halide Layered Double Perovskites: The Role of Sb ³⁺ Substitution in Cs ₄ Cd _{1–<i>x</i>} Mn _{<i>x</i>} Bi ₂ Cl ₁₂ Phosphors. Journal of Physical Chemistry Letters, 2020, 11, 10362-10367.	4.6	26
23	The pH-dependent photoluminescence of colloidal CdSe/ZnS quantum dots with different organic coatings. Nanotechnology, 2015, 26, 255703.	2.6	25
24	Form Follows Function: Warming White LEDs Using Metal Cluster-Loaded Zeolites as Phosphors. ACS Energy Letters, 2017, 2, 2491-2497.	17.4	25
25	Structural and Photophysical Characterization of Ag Clusters in LTA Zeolites. Journal of Physical Chemistry C, 2019, 123, 10630-10638.	3.1	25
26	Confinement of Highly Luminescent Lead Clusters in Zeolite A. Journal of Physical Chemistry C, 2018, 122, 13953-13961.	3.1	24
27	Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters. Journal of Materials Chemistry C, 2016, 4, 4259-4268.	5.5	22
28	Improved Spectral Coverage and Fluorescence Quenching in Donor–acceptor Systems Involving Indolo[3â€2â€b]carbazole and Boronâ€dipyrromethene or Diketopyrrolopyrrole. Photochemistry and Photobiology, 2015, 91, 637-653.	2.5	19
29	Fabrication of silver nanoparticles with limited size distribution on TiO ₂ containing zeolites. Physical Chemistry Chemical Physics, 2014, 16, 18690-18693.	2.8	18
30	Hydrogen evolution reaction on metallic rhenium in acid media with or without methanol. International Journal of Hydrogen Energy, 2019, 44, 27472-27482.	7.1	17
31	Luminescent silver–lithium-zeolite phosphors for near-ultraviolet LED applications. Journal of Materials Chemistry C, 2019, 7, 14366-14374.	5.5	17
32	Tailoring the detection sensitivity of graphene based flexible smoke sensors by decorating with ceramic microparticles. Sensors and Actuators B: Chemical, 2020, 305, 127466.	7.8	16
33	Efficient hydrogen generation by ZnAl2O4 nanoparticles embedded on a flexible graphene composite. Renewable Energy, 2020, 152, 634-643.	8.9	15
34	Silver Zeolite Composite-Based LEDs: Origin of Electroluminescence and Charge Transport. ACS Applied Materials & Interfaces, 2019, 11, 12179-12183.	8.0	14
35	Xâ€Rayâ€Induced Growth Dynamics of Luminescent Silver Clusters in Zeolites. Small, 2020, 16, e2002063.	10.0	14
36	Highly Photoluminescent Sulfide Clusters Confined in Zeolites. Journal of Physical Chemistry C, 2018, 122, 14761-14770.	3.1	13

#	Article	IF	CITATIONS
37	Tunable Luminescence from Stable Silver Nanoclusters Confined in Microporous Zeolites. Advanced Optical Materials, 2021, 9, 2100526.	7.3	12
38	Highly efficient hydrogen generation of Bil3 nanoplates decorated with Ag nanoparticles. International Journal of Hydrogen Energy, 2018, 43, 15962-15974.	7.1	10
39	Tunable white emission of silver-sulfur-zeolites as single-phase LED phosphors. Methods and Applications in Fluorescence, 2020, 8, 024004.	2.3	9
40	Mixed Matrix Membranes Based on Fluoropolymers with <i>m-</i> and <i>p</i> -Terphenyl Fragments for Gas Separation Applications. ACS Omega, 2021, 6, 4921-4931.	3.5	8
41	Metal–biomolecule frameworks (BioMOFs): a novel approach for "green―optoelectronic applications. Chemical Communications, 2022, 58, 677-680.	4.1	7
42	Highly Luminescent Metal Clusters Confined in Zeolites. Structure and Bonding, 2020, , 75-103.	1.0	5
43	Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors. Journal of Visualized Experiments, 2016, , .	0.3	4
44	Electrochemical study in acid aqueous solution and ex-situ X-ray photoelectron spectroscopy analysis of metallic rhenium surface. Journal of Electroanalytical Chemistry, 2021, 893, 115297.	3.8	4
45	Triplet harvesting in poly(9â€vinylcarbazole) and poly(9â€(2,3â€epoxypropyl)carbazole) doped with CdSe/ZnS quantum dots encapsulated with 16â€(<i>N</i> â€earbazolyl) hexadecanoic acid ligands. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 539-551.	2.1	3
46	Synthesis of MCMâ€41 material from acid mud generated in the aluminum extraction of kaolinite mineral. Environmental Progress and Sustainable Energy, 2019, 38, e13069.	2.3	2
47	Porous Materials Obtained from Nonconventional Sources Used in Wastewater Treatment Processes. , 2018, , 1-20.		1
48	The Roles of the Structure and Basic Sites of Sodium Titanates on Transesterification Reactions to Obtain Biodiesel. Catalysts, 2019, 9, 989.	3.5	1
49	Optical encoding of luminescent carbon nanodots in confined spaces. Chemical Communications, 2021, 57, 11952-11955.	4.1	1
50	Optically Active Materials: Aggregation Induced Enhancement of Linear and Nonlinear Optical Emission from a Hexaphenylene Derivative (Adv. Funct. Mater. 48/2016). Advanced Functional Materials, 2016, 26, 9083-9083.	14.9	0
51	Lead confinement and fluorimetric detection using zeolites: towards a rapid and cost-effective detection of lead in water. JPhys Photonics, 2021, 3, 034003.	4.6	Ο