Barry P Sleckman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1578808/publications.pdf

Version: 2024-02-01

111	10,304	50	99
papers	citations	h-index	g-index
118	118	118	12899
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature, 2008, 456, 259-263.	27.8	1,341
2	Distinct Effects of T-bet in T $\langle sub \rangle H \langle sub \rangle$ 1 Lineage Commitment and IFN- \hat{l}^3 Production in CD4 and CD8 T Cells. Science, 2002, 295, 338-342.	12.6	1,064
3	The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nature Immunology, 2012, 13, 1092-1100.	14.5	367
4	ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature, 2006, 442, 466-470.	27.8	366
5	53BP1 Mediates Productive and Mutagenic DNA Repair through Distinct Phosphoprotein Interactions. Cell, 2013, 153, 1266-1280.	28.9	292
6	ACCESSIBILITY CONTROL OF ANTIGEN-RECEPTOR VARIABLE-REGION GENE ASSEMBLY: Role ofcis-Acting Elements. Annual Review of Immunology, 1996, 14, 459-481.	21.8	287
7	Requirement for B Cell Linker Protein (BLNK) in B Cell Development. Science, 1999, 286, 1949-1954.	12.6	276
8	53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature, 2008, 456, 529-533.	27.8	268
9	Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO Journal, 2009, 28, 2414-2427.	7.8	208
10	Expression and function of CD4 in a murine T-cell hybridoma. Nature, 1987, 328, 351-353.	27.8	206
11	DNA Breaks and End Resection Measured Genome-wide by End Sequencing. Molecular Cell, 2016, 63, 898-911.	9.7	206
12	Function of the TCRÎ \pm Enhancer in Î \pm Î 2 and Î 3 Î $^\prime$ T Cells. Immunity, 1997, 7, 505-515.	14.3	191
13	ATM Prevents the Persistence and Propagation of Chromosome Breaks in Lymphocytes. Cell, 2007, 130, 63-75.	28.9	173
14	Formation of Dynamic Î ³ -H2AX Domains along Broken DNA Strands Is Distinctly Regulated by ATM and MDC1 and Dependent upon H2AX Densities in Chromatin. Molecular Cell, 2009, 34, 298-310.	9.7	169
15	The Response to and Repair of RAG-Mediated DNA Double-Strand Breaks. Annual Review of Immunology, 2012, 30, 175-202.	21.8	163
16	Recombination signal sequences restrict chromosomal $V(D)J$ recombination beyond the $12/23$ rule. Nature, 2000, 405, 583-586.	27.8	158
17	Catalytic and Noncatalytic Roles of the CtIP Endonuclease in Double-Strand Break End Resection. Molecular Cell, 2014, 54, 1022-1033.	9.7	158
18	A Novel Secreted Protein, MYR1, Is Central to <i>Toxoplasma</i> 's Manipulation of Host Cells. MBio, 2016, 7, e02231-15.	4.1	138

#	Article	IF	CITATIONS
19	DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature, 2008, 456, 819-823.	27.8	137
20	\hat{I}^3 -Herpesvirus Kinase Actively Initiates a DNA Damage Response by Inducing Phosphorylation of H2AX to Foster Viral Replication. Cell Host and Microbe, 2007, 1, 275-286.	11.0	134
21	Proteasome Activator PA200 Is Required for Normal Spermatogenesis. Molecular and Cellular Biology, 2006, 26, 2999-3007.	2.3	133
22	H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature, 2011, 469, 245-249.	27.8	131
23	RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature Immunology, 2009, 10, 655-664.	14.5	130
24	T-cell glucocorticoid receptor is required to suppress COX-2-mediated lethal immune activation. Nature Medicine, 2003, 9, 1318-1322.	30.7	121
25	Thymocyte Apoptosis Induced by T Cell Activation Is Mediated by Glucocorticoids In Vivo. Journal of Immunology, 2002, 169, 1837-1843.	0.8	118
26	Dynamic regulation of <i>câ€Myc</i> protoâ€oncogene expression during lymphocyte development revealed by a <i>GFPâ€câ€Myc</i> knockâ€in mouse. European Journal of Immunology, 2008, 38, 342-349.	2.9	118
27	Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair. Journal of Cell Biology, 2011, 193, 295-305.	5.2	115
28	Immature Thymocytes Employ Distinct Signaling Pathways for Allelic Exclusion versus Differentiation and Expansion. Immunity, 1999, 10, 537-546.	14.3	110
29	At the intersection of DNA damage and immune responses. Nature Reviews Immunology, 2019, 19, 231-242.	22.7	105
30	Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase–substrate complex. Nature Immunology, 2010, 11, 207-215.	14.5	103
31	Intrathymic proliferation wave essential for $\hat{\text{Vl}}\pm14$ (sup>+ natural killer T cell development depends on c-Myc. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8641-8646.	7.1	100
32	DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nature Communications, 2020, 11, 3158.	12.8	97
33	Loss of ATM kinase activity leads to embryonic lethality in mice. Journal of Cell Biology, 2012, 198, 295-304.	5.2	94
34	Allelic exclusion at the TCRβ locus. Current Opinion in Immunology, 2002, 14, 230-234.	5.5	88
35	L-Myc expression by dendritic cells is required for optimal T-cell priming. Nature, 2014, 507, 243-247.	27.8	87
36	MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. Journal of Experimental Medicine, 2009, 206, 669-679.	8.5	81

#	Article	IF	Citations
37	Cell circuits between B cell progenitors and IL-7+ mesenchymal progenitor cells control B cell development. Journal of Experimental Medicine, 2018, 215, 2586-2599.	8.5	80
38	A Developmental Switch from TCRδ Enhancer to TCRα Enhancer Function during Thymocyte Maturation. Immunity, 1999, 10, 723-733.	14.3	76
39	MRI Is a DNA Damage Response Adaptor during Classical Non-homologous End Joining. Molecular Cell, 2018, 71, 332-342.e8.	9.7	76
40	\hat{l}^2 -Catenin induces T-cell transformation by promoting genomic instability. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 391-396.	7.1	71
41	The Histone Chaperones ASF1 and CAF-1 Promote MMS22L-TONSL-Mediated Rad51 Loading onto ssDNA during Homologous Recombination in Human Cells. Molecular Cell, 2018, 69, 879-892.e5.	9.7	69
42	Cutaneous Acute Graft-Versus-Host Disease to Minor Histocompatibility Antigens in a Murine Model: Histologic Analysis and Correlation to Clinical Disease. Journal of Investigative Dermatology, 1986, 86, 371-375.	0.7	63
43	Functional analysis of naturally occurring DCLRE1C mutations and correlation with the clinical phenotype of ARTEMIS deficiency. Journal of Allergy and Clinical Immunology, 2015, 136, 140-150.e7.	2.9	63
44	Developmental Regulation of TCRδ Locus Accessibility and Expression by the TCRδ Enhancer. Immunity, 1999, 10, 503-513.	14.3	60
45	Ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases have overlapping activities during chromosomal signal joint formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2022-2027.	7.1	58
46	Regulation of T cell receptor \hat{l}^2 allelic exclusion at a level beyond accessibility. Nature Immunology, 2005, 6, 189-197.	14.5	57
47	Defects in coding joint formation in vivo in developing ATM-deficient B and T lymphocytes. Journal of Experimental Medicine, 2007, 204, 1371-1381.	8.5	57
48	Assembly of Productive T Cell Receptor \hat{l} Variable Region Genes Exhibits Allelic Inclusion. Journal of Experimental Medicine, 1998, 188, 1465-1471.	8.5	56
49	Histone H2AX stabilizes broken DNA strands to suppress chromosome breaks and translocations during V(D)J recombination. Journal of Experimental Medicine, 2009, 206, 2625-2639.	8.5	55
50	Lymphocyte Development: Integration of DNA Damage Response Signaling. Advances in Immunology, 2012, 116, 175-204.	2.2	55
51	Green Fluorescent Protein-Glucocorticoid Receptor Knockin Mice Reveal Dynamic Receptor Modulation During Thymocyte Development. Journal of Immunology, 2002, 169, 1309-1318.	0.8	51
52	MAPK p $38\hat{l}\pm$ Is Dispensable for Lymphocyte Development and Proliferation. Journal of Immunology, 2005, 174, 1239-1244.	0.8	50
53	Selective Requirement of p38α MAPK in Cytokine-Dependent, but Not Antigen Receptor-Dependent, Th1 Responses. Journal of Immunology, 2006, 176, 4616-4621.	0.8	50
54	Accessibility control of variable region gene assembly during T-cell development. Immunological Reviews, 1998, 165, 121-130.	6.0	49

#	Article	IF	CITATIONS
55	RAG-mediated DNA double-strand breaks activate a cell type–specific checkpoint to inhibit pre–B cell receptor signals. Journal of Experimental Medicine, 2016, 213, 209-223.	8.5	47
56	Unique and redundant functions of ATM and DNA-PKcs during $V(D)J$ recombination. Cell Cycle, 2011, 10, 1928-1935.	2.6	44
57	RAG-induced DNA double-strand breaks signal through Pim2 to promote pre–B cell survival and limit proliferation. Journal of Experimental Medicine, 2012, 209, 11-17.	8.5	43
58	Aberrant V(D)J Recombination in Ataxia Telangiectasia Mutated-Deficient Lymphocytes Is Dependent on Nonhomologous DNA End Joining. Journal of Immunology, 2008, 181, 2620-2625.	0.8	42
59	The Ataxia Telangiectasia mutated kinase controls Igκ allelic exclusion by inhibiting secondary <i>Vκ</i> -to- <i>Jκ</i> rearrangements. Journal of Experimental Medicine, 2013, 210, 233-239.	8.5	42
60	Intra- and inter-allelic ordering of T cell receptor ? chain gene assembly. European Journal of Immunology, 2005, 35, 964-970.	2.9	40
61	Revision of T cell receptor chain genes is required for normal T lymphocyte development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14356-14361.	7.1	40
62	Autoreactive marginal zone B cells are spontaneously activated but lymph node B cells require T cell help. Journal of Experimental Medicine, 2006, 203, 1985-1998.	8.5	40
63	A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages. ELife, 2017, 6, .	6.0	40
64	T cell receptor CDR3 loop length repertoire is determined primarily by features of the $V(D)J$ recombination reaction. European Journal of Immunology, 2003, 33, 1568-1575.	2.9	39
65	Functional Intersection of ATM and DNA-Dependent Protein Kinase Catalytic Subunit in Coding End Joining during V(D)J Recombination. Molecular and Cellular Biology, 2013, 33, 3568-3579.	2.3	39
66	Aberrantly resolved RAG-mediated DNA breaks in Atm-deficient lymphocytes target chromosomal breakpoints in <i>cis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18339-18344.	7.1	37
67	Deficiency of XLF and PAXX prevents DNA double-strand break repair by non-homologous end joining in lymphocytes. Cell Cycle, 2017, 16, 286-295.	2.6	36
68	Cutting Edge: Targeting of \hat{V}^2 to \hat{D}^2 Rearrangement by RSSs Can Be Mediated by the V(D)J Recombinase in the Absence of Additional Lymphoid-Specific Factors. Journal of Immunology, 2003, 170, 5-9.	0.8	34
69	Posttranscriptional regulation of c-Myc expression in adult murine HSCs during homeostasis and interferon-α-induced stress response. Blood, 2014, 123, 3909-3913.	1.4	33
70	T cell receptor (TCR) \hat{A}/\hat{A} locus enhancer identity and position are critical for the assembly of TCR \hat{A} and \hat{A} variable region genes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2598-2603.	7.1	31
71	HCoDES Reveals Chromosomal DNA End Structures with Single-Nucleotide Resolution. Molecular Cell, 2014, 56, 808-818.	9.7	31
72	A Comparison of Amino Acid Separations on Silica Gel, Cellulose, and Ion Exchange Thin Layers. Journal of Liquid Chromatography and Related Technologies, 1982, 5, 1051-1068.	1.0	28

#	Article	IF	CITATIONS
73	Role of 53BP1 in end protection and DNA synthesis at DNA breaks. Genes and Development, 2021, 35, 1356-1367.	5.9	28
74	Regulation of T-cell receptor beta-chain gene assembly by recombination signals: the beyond 12/23 restriction. Immunological Reviews, 2004, 200, 36-43.	6.0	26
75	Unique epigenetic influence of H2AX phosphorylation and H3K56 acetylation on normal stem cell radioresponses. Molecular Biology of the Cell, 2016, 27, 1332-1345.	2.1	26
76	Collateral Damage from Antigen Receptor Gene Diversification. Cell, 2008, 135, 1009-1012.	28.9	24
77	Chromatography of Amino Acids on Reversed Phase Thin Layer Plates. Journal of Liquid Chromatography and Related Technologies, 1983, 6, 95-108.	1.0	23
78	Integrated signaling in developing lymphocytes. Cell Cycle, 2012, 11, 4129-4134.	2.6	21
79	KAP-1 Promotes Resection of Broken DNA Ends Not Protected by \hat{I}^3 -H2AX and 53BP1 in G ₁ -Phase Lymphocytes. Molecular and Cellular Biology, 2014, 34, 2811-2821.	2.3	20
80	Restrictions Limiting the Generation of DNA Double Strand Breaks during Chromosomal V(D)J Recombination. Journal of Experimental Medicine, 2002, 195, 309-316.	8.5	19
81	The B12/23 Restriction Is Critically Dependent on Recombination Signal Nonamer and Spacer Sequences. Journal of Immunology, 2003, 171, 6604-6610.	0.8	18
82	Chimeric IgH-TCRα/δ translocations in T lymphocytes mediated by RAG. Cell Cycle, 2009, 8, 2408-2412.	2.6	18
83	Repair of Chromosomal RAG-Mediated DNA Breaks by Mutant RAG Proteins Lacking Phosphatidylinositol 3-Like Kinase Consensus Phosphorylation Sites. Journal of Immunology, 2011, 187, 1826-1834.	0.8	18
84	T Cell Costimulation through CD28 Depends on Induction of the Bcl-x \hat{l}^3 Isoform. Journal of Experimental Medicine, 2002, 196, 87-95.	8.5	15
85	XLF and H2AX function in series to promote replication fork stability. Journal of Cell Biology, 2019, 218, 2113-2123.	5.2	15
86	Regional Gene Repression by DNA Double-Strand Breaks in G $<$ sub $>$ 1 $<$ /sub $>$ Phase Cells. Molecular and Cellular Biology, 2019, 39, .	2.3	15
87	Metabolic sensor AMPK directly phosphorylates RAG1 protein and regulates V(D)J recombination. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9873-9878.	7.1	14
88	LIN37-DREAM prevents DNA end resection and homologous recombination at DNA double-strand breaks in quiescent cells. ELife, 2021, 10, .	6.0	14
89	The cytoplasmic domain of CD4 is required for stable association with the lymphocyte-specific tyrosine protein kinase p56lck. European Journal of Immunology, 1990, 20, 1397-1400.	2.9	13
90	DNA damage activates a complex transcriptional response in murine lymphocytes that includes both physiological and cancer-predisposition programs. BMC Genomics, 2013, 14, 163.	2.8	13

#	Article	IF	Citations
91	The BCL11A Transcription Factor Directly Activates RAG Gene Expression and $V(D)J$ Recombination. Molecular and Cellular Biology, 2013, 33, 1768-1781.	2.3	13
92	Assessing a role for enhancer-blocking activity in gene regulation within the murine T-cell receptor alpha/delta locus. Immunology, 2001, 104, 11-18.	4.4	12
93	Chromosomal excision of TCRδ chain genes is dispensable for αβ T cell lineage commitment. International Immunology, 2005, 17, 225-232.	4.0	12
94	RNF2 ablation reprograms the tumor-immune microenvironment and stimulates durable NK and CD4+ T-cell-dependent antitumor immunity. Nature Cancer, 2021, 2, 1018-1038.	13.2	11
95	DNA-PK promotes DNA end resection at DNA double strand breaks in GO cells. ELife, 2022, 11, .	6.0	11
96	Preparing Targets for $V(D)J$ Recombinase: Transcription Paves the Way. Journal of Immunology, 2012, 188, 7-9.	0.8	10
97	Lymphocyte Antigen Receptor Gene Assembly: Multiple Layers of Regulation. Immunologic Research, 2005, 32, 253-258.	2.9	9
98	Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for $V(D)J$ recombination. Journal of Experimental Medicine, 2021, 218, .	8.5	8
99	The RNF8 and RNF168 Ubiquitin Ligases Regulate Pro- and Anti-Resection Activities at Broken DNA Ends During Non-Homologous End Joining. DNA Repair, 2021, 108, 103217.	2.8	8
100	The histone chaperone ASF1 regulates the activation of ATM and DNA-PKcs in response to DNA double-strand breaks. Cell Cycle, 2018, 17, 1413-1424.	2.6	6
101	DNA damage responses in murine Pre-B cells with genetic deficiencies in damage response genes. Cell Cycle, 2020, 19, 67-83.	2.6	6
102	Loss of H3K36 Methyltransferase SETD2 Impairs $V(D)J$ Recombination during Lymphoid Development. IScience, 2020, 23, 100941.	4.1	6
103	High-Throughput Screening Approach for Identifying Compounds That Inhibit Nonhomologous End Joining. SLAS Discovery, 2018, 23, 624-633.	2.7	5
104	BRCAness in non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2014, 32, 11033-11033.	1.6	5
105	DNA Damage Responses: Beyond Double-Strand Break Repair. Current Biology, 2015, 25, R45-R46.	3.9	4
106	The regulation of DNA end resection by chromatin response to DNA double strand breaks. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	4
107	A Flow Cytometry-Based Method for Analyzing DNA End Resection in G0- and G1-Phase Mammalian Cells. Bio-protocol, 2022, 12, .	0.4	2
108	A Path(way) to Keeping Your Synapses on an Even Keel. Neuron, 2018, 100, 1013-1014.	8.1	0

#	Article	IF	CITATIONS
109	RAG-mediated DNA double-strand breaks activate a cell type–specific checkpoint to inhibit pre–B cell receptor signals. Journal of Cell Biology, 2016, 212, 2124OIA21.	5.2	O
110	The Lysine Histone Methyltransferase SETD2 Is Required for Appropriate Immunoglobulin VDJ Recombination. Blood, 2018, 132, 511-511.	1.4	0
111	A Whole Genome Screening Approach for Identifying Genes Encoding DNA End-Processing Proteins. Methods in Molecular Biology, 2022, 2444, 15-27.	0.9	0