Maurizio Corbetta

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1578756/maurizio-corbetta-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

46,404 238 215 75 h-index g-index citations papers 281 7.69 54,264 7.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
238	Post-stroke outcomes predicted from multivariate lesion-behaviour and lesion network mapping <i>Brain</i> , 2022 ,	11.2	2
237	The future of human behaviour research Nature Human Behaviour, 2022, 6, 15-24	12.8	3
236	Diffusion-based microstructure models in brain tumours: Fitting in presence of a model-microstructure mismatch <i>NeuroImage: Clinical</i> , 2022 , 34, 102968	5.3	
235	Temporal exponential random graph models of longitudinal brain networks after stroke <i>Journal of the Royal Society Interface</i> , 2022 , 19, 20210850	4.1	1
234	Magnetic Resonance Imaging Correlates of Immune Microenvironment in Glioblastoma <i>Frontiers in Oncology</i> , 2022 , 12, 823812	5.3	
233	Widespread cortical functional disconnection in gliomas: an individual network mapping approach <i>Brain Communications</i> , 2022 , 4, fcac082	4.5	O
232	Post-stroke reorganization of transient brain activity characterizes deficits and recovery of cognitive functions <i>Neurolmage</i> , 2022 , 119201	7.9	O
231	Impaired cognitive control in patients with brain tumors Neuropsychologia, 2022, 108187	3.2	
230	Assessment of structural disconnections in gliomas: comparison of indirect and direct approaches <i>Brain Structure and Function</i> , 2022 , 1	4	O
229	Variability of regional glucose metabolism and the topology of functional networks in the human brain <i>NeuroImage</i> , 2022 , 119280	7.9	O
228	Edge-centric analysis of stroke patients: An alternative approach for biomarkers of lesion recovery. NeuroImage: Clinical, 2022, 35, 103055	5.3	O
227	A novel stroke lesion network mapping approach: improved accuracy yet still low deficit prediction. <i>Brain Communications</i> , 2021 , 3, fcab259	4.5	O
226	TMS-EEG Biomarkers of Amnestic Mild Cognitive Impairment Due to Alzheimerß Disease: A Proof-of-Concept Six Years Prospective Study. <i>Frontiers in Aging Neuroscience</i> , 2021 , 13, 737281	5.3	3
225	Unveiling whole-brain dynamics in normal aging through Hidden Markov Models. <i>Human Brain Mapping</i> , 2021 ,	5.9	2
224	Brain network modulation in Alzheimer ß and frontotemporal dementia with transcranial electrical stimulation <i>Neurobiology of Aging</i> , 2021 , 111, 24-34	5.6	2
223	Effective connectivity extracts clinically relevant prognostic information from resting state activity in stroke. <i>Brain Communications</i> , 2021 , 3, fcab233	4.5	1
222	Opinion, knowledge, and clinical experience with functional neurological disorders among Italian neurologists: results from an online survey. <i>Journal of Neurology</i> , 2021 , 1	5.5	1

(2020-2021)

221	Breakdown of specific functional brain networks in clinical variants of Alzheimerß disease. <i>Ageing Research Reviews</i> , 2021 , 72, 101482	12	4
220	A low-dimensional structure of neurological impairment in stroke. <i>Brain Communications</i> , 2021 , 3, fcab1	1 19 5	1
219	Multi-band MEG signatures of BOLD connectivity reorganization during visuospatial attention. <i>Neurolmage</i> , 2021 , 230, 117781	7.9	5
218	Reply: Lesion network mapping predicts post-stroke behavioural deficits and improves localization. <i>Brain</i> , 2021 , 144, e36	11.2	2
217	White matter abnormalities of right hemisphere attention networks contribute to visual hallucinations in dementia with Lewy bodies. <i>Cortex</i> , 2021 , 139, 86-98	3.8	2
216	Directed Flow of Beta Band Communication During Reorienting of Attention Within the Dorsal Attention Network. <i>Brain Connectivity</i> , 2021 , 11, 717-724	2.7	3
215	Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. <i>Nature Human Behaviour</i> , 2021 ,	12.8	12
214	Spontaneous Beta Band Rhythms in the Predictive Coding of Natural Stimuli. <i>Neuroscientist</i> , 2021 , 27, 184-201	7.6	6
213	Reply: Lesion network mapping: where do we go from here?. <i>Brain</i> , 2021 , 144, e6	11.2	6
212	Stroke-related alterations in inter-areal communication. <i>NeuroImage: Clinical</i> , 2021 , 32, 102812	5.3	1
211	Lesion Quantification Toolkit: A MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions. <i>NeuroImage: Clinical</i> , 2021 , 30, 102639	5.3	14
210	Rule Perseveration during Task-Switching in Brain Tumor: A Severe Form of Task-Setting Impairment. <i>Journal of Cognitive Neuroscience</i> , 2021 , 1-18	3.1	1
209	Common and unique structural plasticity after left and right hemisphere stroke. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2021 , 41, 3350-3364	7.3	O
208	Changes of Metabolic Connectivity in Dementia with Lewy Bodies with Visual Hallucinations: A F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Study. <i>Brain Connectivity</i> , 2021 , 11, 518-528	2.7	2
207	The secret life of predictive brains: what is spontaneous activity for?. <i>Trends in Cognitive Sciences</i> , 2021 , 25, 730-743	14	19
206	Visual exploration dynamics are low-dimensional and driven by intrinsic factors. <i>Communications Biology</i> , 2021 , 4, 1100	6.7	1
205	Spectral signature of attentional reorienting in the human brain. <i>NeuroImage</i> , 2021 , 244, 118616	7.9	1
204	Multiple Network Disconnection in Anosognosia for Hemiplegia. <i>Frontiers in Systems Neuroscience</i> , 2020 , 14, 21	3.5	8

203	Post-stroke deficit prediction from lesion and indirect structural and functional disconnection. <i>Brain</i> , 2020 , 143, 2173-2188	11.2	58
202	Damage to the shortest structural paths between brain regions is associated with disruptions of resting-state functional connectivity after stroke. <i>NeuroImage</i> , 2020 , 210, 116589	7.9	22
201	Focal left prefrontal lesions and cognitive impairment: A multivariate lesion-symptom mapping approach. <i>Neuropsychologia</i> , 2020 , 136, 107253	3.2	5
200	Sparse DCM for whole-brain effective connectivity from resting-state fMRI data. <i>NeuroImage</i> , 2020 , 208, 116367	7.9	9
199	Model-based whole-brain effective connectivity to study distributed cognition in health and disease. <i>Network Neuroscience</i> , 2020 , 4, 338-373	5.6	10
198	Multivariate Lesion-Behavior Mapping of General Cognitive Ability and Its Psychometric Constituents. <i>Journal of Neuroscience</i> , 2020 , 40, 8924-8937	6.6	9
197	Spontaneously emerging patterns in human visual cortex and their functional connectivity are linked to the patterns evoked by visual stimuli. <i>Journal of Neurophysiology</i> , 2020 , 124, 1343-1363	3.2	2
196	Alertness Training Improves Spatial Bias and Functional Ability in Spatial Neglect. <i>Annals of Neurology</i> , 2020 , 88, 747-758	9.4	4
195	Posterior reversible encephalopathy syndrome associated with Guillain-Barr syndrome: Case report and clinical management considerations. <i>Journal of Clinical Apheresis</i> , 2020 , 35, 231-233	3.2	1
194	Structural Disconnections Explain Brain Network Dysfunction after Stroke. <i>Cell Reports</i> , 2019 , 28, 2527	-2 546 .e	25 3
193	Safety and efficacy of edaravone compared to historical controls in patients with amyotrophic lateral sclerosis from North-Eastern Italy. <i>Journal of the Neurological Sciences</i> , 2019 , 404, 47-51	3.2	12
192	A Novel Gradient Echo Plural Contrast Imaging Method Detects Brain Tissue Abnormalities in Patients With TBI Without Evident Anatomical Changes on Clinical MRI: A Pilot Study. <i>Military Medicine</i> , 2019 , 184, 218-227	1.3	3
191	The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. <i>Nature Communications</i> , 2019 , 10, 1417	17.4	85
190	The evolution of the temporoparietal junction and posterior superior temporal sulcus. <i>Cortex</i> , 2019 , 118, 38-50	3.8	59
189	A Comparison of Shallow and Deep Learning Methods for Predicting Cognitive Performance of Stroke Patients From MRI Lesion Images. <i>Frontiers in Neuroinformatics</i> , 2019 , 13, 53	3.9	30
188	A human memory circuit derived from brain lesions causing amnesia. <i>Nature Communications</i> , 2019 , 10, 3497	17.4	56
187	A Human Depression Circuit Derived From Focal Brain Lesions. <i>Biological Psychiatry</i> , 2019 , 86, 749-758	7.9	70
186			

(2017-2019)

The Impact of the Geometric Correction Scheme on MEG Functional Topology at Rest. <i>Frontiers in Neuroscience</i> , 2019 , 13, 1114	5.1	8
Archetypes of human cognition defined by time preference for reward and their brain correlates: An evolutionary trade-off approach. <i>Neurolmage</i> , 2019 , 185, 322-334	7.9	8
Brain networksRfunctional connectivity separates aphasic deficits in stroke. <i>Neurology</i> , 2019 , 92, e125-6	e1635	13
Distinct modes of functional connectivity induced by movie-watching. <i>NeuroImage</i> , 2019 , 184, 335-348	7.9	13
Distinct phase-amplitude couplings distinguish cognitive processes in human attention. <i>NeuroImage</i> , 2018 , 175, 111-121	7.9	17
Warnings and caveats in brain controllability. <i>NeuroImage</i> , 2018 , 176, 83-91	7.9	34
Re-emergence of modular brain networks in stroke recovery. <i>Cortex</i> , 2018 , 101, 44-59	3.8	101
On the low dimensionality of behavioral deficits and alterations of brain network connectivity after focal injury. <i>Cortex</i> , 2018 , 107, 229-237	3.8	37
Topology of Functional Connectivity and Hub Dynamics in the Beta Band As Temporal Prior for Natural Vision in the Human Brain. <i>Journal of Neuroscience</i> , 2018 , 38, 3858-3871	6.6	15
A New Modular Brain Organization of the BOLD Signal during Natural Vision. <i>Cerebral Cortex</i> , 2018 , 28, 3065-3081	5.1	27
Linking Entropy at Rest with the Underlying Structural Connectivity in the Healthy and Lesioned Brain. <i>Cerebral Cortex</i> , 2018 , 28, 2948-2958	5.1	14
Cortical cores in network dynamics. <i>NeuroImage</i> , 2018 , 180, 370-382	7.9	58
Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. <i>NeuroImage</i> , 2018 , 180, 534-546	7.9	35
Stronger prediction of motor recovery and outcome post-stroke by cortico-spinal tract integrity than functional connectivity. <i>PLoS ONE</i> , 2018 , 13, e0202504	3.7	19
Homeostatic plasticity and emergence of functional networks in a whole-brain model at criticality. <i>Scientific Reports</i> , 2018 , 8, 15682	4.9	18
Frequency-specific electrophysiologic correlates of resting state fMRI networks. <i>NeuroImage</i> , 2017 , 149, 446-457	7.9	73
The contribution of the human posterior parietal cortex to episodic memory. <i>Nature Reviews Neuroscience</i> , 2017 , 18, 183-192	13.5	145
Understanding the brain through large, multidisciplinary research initiatives. <i>Lancet Neurology, The</i> , 2017 , 16, 183-184	24.1	4
	Neuroscience, 2019, 13, 1114 Archetypes of human cognition defined by time preference for reward and their brain correlates: An evolutionary trade-off approach. NeuroImage, 2019, 185, 322-334 Brain networksiffunctional connectivity separates aphasic deficits in stroke. Neurolagy, 2019, 92, e125-62 Distinct modes of functional connectivity induced by movie-watching. NeuroImage, 2019, 184, 335-348 Distinct phase-amplitude couplings distinguish cognitive processes in human attention. NeuroImage, 2018, 175, 111-121 Warnings and caveats in brain controllability. NeuroImage, 2018, 176, 83-91 Re-emergence of modular brain networks in stroke recovery. Cortex, 2018, 101, 44-59 On the low dimensionality of behavioral deficits and alterations of brain network connectivity after focal injury. Cortex, 2018, 107, 229-237 Topology of Functional Connectivity and Hub Dynamics in the Beta Band As Temporal Prior for Natural Vision in the Human Brain. Journal of Neuroscience, 2018, 38, 3858-3871 A New Modular Brain Organization of the BOLD Signal during Natural Vision. Cerebral Cortex, 2018, 28, 3065-3081 Linking Entropy at Rest with the Underlying Structural Connectivity in the Healthy and Lesioned Brain. Cerebral Cortex, 2018, 28, 2948-2958 Cortical cores in network dynamics. NeuroImage, 2018, 180, 370-382 Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. NeuroImage, 2018, 180, 534-546 Stronger prediction of motor recovery and outcome post-stroke by cortico-spinal tract integrity than functional connectivity. PLoS ONE, 2018, 13, e0202504 Homeostatic plasticity and emergence of functional networks in a whole-brain model at criticality. Scientific Reports, 2018, 8, 15682 Frequency-specific electrophysiologic correlates of resting state fMRI networks. NeuroImage, 2017, 149, 446-457 The contribution of the human posterior parietal cortex to episodic memory. Nature Reviews Neuroscience, 2017, 18, 183-192 Understanding the	Archetypes of human cognition defined by time preference for reward and their brain correlates: An evolutionary trade-off approach. NeuroImage, 2019, 185, 322-334 Brain networksifunctional connectivity separates aphasic deficits in stroke. NeuroImage, 2019, 92, e125-e135 Distinct modes of functional connectivity induced by movie-watching. NeuroImage, 2019, 184, 335-348 7.9 Distinct phase-amplitude couplings distinguish cognitive processes in human attention. NeuroImage, 2018, 175, 111-121 Warnings and caveats in brain controllability. NeuroImage, 2018, 176, 83-91 Re-emergence of modular brain networks in stroke recovery. Cortex, 2018, 101, 44-59 3.8 On the low dimensionality of behavioral deficits and alterations of brain network connectivity after focal linjury. Cortex, 2018, 107, 229-237 Topology of Functional Connectivity and Hub Dynamics in the Beta Band As Temporal Prior for Natural Vision in the Human Brain. Journal of Neuroscience, 2018, 38, 3858-3871 A New Modular Brain Organization of the BOLD Signal during Natural Vision. Cerebral Cortex, 2018, 28, 305-3081 Linking Entropy at Rest with the Underlying Structural Connectivity in the Healthy and Lesioned Brain. Cerebral Cortex, 2018, 28, 2948-2958 Cortical cores in network dynamics. NeuroImage, 2018, 180, 370-382 279 Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. NeuroImage, 2018, 180, 534-546 Stronger prediction of motor recovery and outcome post-stroke by cortico-spinal tract integrity than functional connectivity. PLoS ONE, 2018, 13, e0202504 Homeostatic plasticity and emergence of functional networks in a whole-brain model at criticality. 279 Homeostatic plasticity and emergence of functional networks in a whole-brain model at criticality. 49, 446-457 The contribution of the human posterior parietal cortex to episodic memory. Nature Reviews Neuroscience, 2017, 18, 183-192 Understanding the brain through large, multidisciplinary resear

167	Decreased integration and information capacity in stroke measured by whole brain models of resting state activity. <i>Brain</i> , 2017 , 140, 1068-1085	11.2	46
166	Measuring functional connectivity in stroke: Approaches and considerations. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2017 , 37, 2665-2678	7.3	41
165	Top-down cortical interactions in visuospatial attention. <i>Brain Structure and Function</i> , 2017 , 222, 3127-3	31 ₄ 45	20
164	Differential white matter involvement associated with distinct visuospatial deficits after right hemisphere stroke. <i>Cortex</i> , 2017 , 88, 81-97	3.8	32
163	Data Quality Influences Observed Links Between Functional Connectivity and Behavior. <i>Cerebral Cortex</i> , 2017 , 27, 4492-4502	5.1	171
162	Task and Regions Specific Top-Down Modulation of Alpha Rhythms in Parietal Cortex. <i>Cerebral Cortex</i> , 2017 , 27, 4815-4822	5.1	29
161	Reply: Defining a functional network homeostasis after stroke: EEG-based approach is complementary to functional MRI. <i>Brain</i> , 2017 , 140, e72	11.2	O
160	Brain PET and functional MRI: why simultaneously using hybrid PET/MR systems?. <i>Quarterly Journal of Nuclear Medicine and Molecular Imaging</i> , 2017 , 61, 345-359	1.4	12
159	Magnetic stimulation of visual cortex impairs perceptual learning. <i>NeuroImage</i> , 2016 , 143, 250-255	7.9	12
158	Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system. <i>Neurology</i> , 2016 , 87, 198-205	6.5	12
157	Exploring the physiological correlates of chronic mild traumatic brain injury symptoms. <i>NeuroImage: Clinical</i> , 2016 , 11, 10-19	5.3	19
156	The effects of hemodynamic lag on functional connectivity and behavior after stroke. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2016 , 36, 2162-2176	7.3	66
155	Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E436	7-76	290
154	Normalization of network connectivity in hemispatial neglect recovery. <i>Annals of Neurology</i> , 2016 , 80, 127-41	9.4	62
153	Brain connectivity and neurological disorders after stroke. <i>Current Opinion in Neurology</i> , 2016 , 29, 706-7	7 1/3 1	56
152	Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke. <i>Brain</i> , 2016 , 139, 2024-38	11.2	54
151	Dynamics of EEG rhythms support distinct visual selection mechanisms in parietal cortex: a simultaneous transcranial magnetic stimulation and EEG study. <i>Journal of Neuroscience</i> , 2015 , 35, 721-3	so ^{6.6}	21
150	Dynamic reorganization of human resting-state networks during visuospatial attention. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 8112-7	11.5	109

(2014-2015)

149	Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity. <i>PLoS Computational Biology</i> , 2015 , 11, e1004100	5	139
148	Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information. <i>Journal of Neuroscience</i> , 2015 , 35, 9786-98	6.6	31
147	Functional evolution of new and expanded attention networks in humans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9454-9	11.5	60
146	Descriptive data analysis examining how standardized assessments are used to guide post-acute discharge recommendations for rehabilitation services after stroke. <i>Physical Therapy</i> , 2015 , 95, 710-9	3.3	13
145	Common behavioral clusters and subcortical anatomy in stroke. <i>Neuron</i> , 2015 , 85, 927-41	13.9	240
144	Special issue [Hearing, aging and cognitive disorders Resting state network changes in aging and cognitive decline. <i>Hearing, Balance and Communication</i> , 2015 , 13, 58-64	0.7	4
143	Filling in the gaps: Anticipatory control of eye movements in chronic mild traumatic brain injury. <i>NeuroImage: Clinical</i> , 2015 , 8, 210-23	5.3	31
142	Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction. <i>Brain Structure and Function</i> , 2015 , 220, 2587-601	4	18
141	Abnormal White Matter Blood-Oxygen-Level-Dependent Signals in Chronic Mild Traumatic Brain Injury. <i>Journal of Neurotrauma</i> , 2015 , 32, 1254-71	5.4	41
140	Decision and action planning signals in human posterior parietal cortex during delayed perceptual choices. <i>European Journal of Neuroscience</i> , 2014 , 39, 1370-83	3.5	22
139	How local excitation-inhibition ratio impacts the whole brain dynamics. <i>Journal of Neuroscience</i> , 2014 , 34, 7886-98	6.6	180
138	Large-scale changes in network interactions as a physiological signature of spatial neglect. <i>Brain</i> , 2014 , 137, 3267-83	11.2	114
137	Domain-general signals in the cingulo-opercular network for visuospatial attention and episodic memory. <i>Journal of Cognitive Neuroscience</i> , 2014 , 26, 551-68	3.1	59
136	The circuitry of abulia: insights from functional connectivity MRI. NeuroImage: Clinical, 2014, 6, 320-6	5.3	26
135	Hemispatial neglect: clinic, pathogenesis, and treatment. <i>Seminars in Neurology</i> , 2014 , 34, 514-23	3.2	34
134	A case-control study of the effectiveness of tissue plasminogen activator on 6 month patientsreported outcomes and health care utilization. <i>Journal of Stroke and Cerebrovascular Diseases</i> , 2014 , 23, 2914-2919	2.8	
133	Dorsal and ventral attention systems underlie social and symbolic cueing. <i>Journal of Cognitive Neuroscience</i> , 2014 , 26, 63-80	3.1	40
132	Memory accumulation mechanisms in human cortex are independent of motor intentions. <i>Journal of Neuroscience</i> , 2014 , 34, 6993-7006	6.6	23

131	Resting-state modulation of Prhythms by interference with angular gyrus activity. <i>Journal of Cognitive Neuroscience</i> , 2014 , 26, 107-19	3.1	32
130	Spatiotemporal structure of the spontaneous activity of the brain: modeling and comparison to experimental data. <i>IEICE Proceeding Series</i> , 2014 , 1, 566-569		
129	Frequency-specific mechanism links human brain networks for spatial attention. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 19585-90	11.5	72
128	Function in the human connectome: task-fMRI and individual differences in behavior. <i>NeuroImage</i> , 2013 , 80, 169-89	7.9	779
127	Natural scenes viewing alters the dynamics of functional connectivity in the human brain. <i>Neuron</i> , 2013 , 79, 782-97	13.9	121
126	Adding dynamics to the Human Connectome Project with MEG. <i>NeuroImage</i> , 2013 , 80, 190-201	7.9	132
125	Interference with episodic memory retrieval following transcranial stimulation of the inferior but not the superior parietal lobule. <i>Neuropsychologia</i> , 2013 , 51, 900-6	3.2	47
124	Impaired and facilitated functional networks in temporal lobe epilepsy. <i>NeuroImage: Clinical</i> , 2013 , 2, 862-72	5.3	87
123	Evolutionarily novel functional networks in the human brain?. <i>Journal of Neuroscience</i> , 2013 , 33, 3259-7	'5 6.6	216
122	Clinician adherence to a standardized assessment battery across settings and disciplines in a poststroke rehabilitation population. <i>Archives of Physical Medicine and Rehabilitation</i> , 2013 , 94, 1048-53	3.ẽ† ⁸	23
121	Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure. <i>NeuroImage</i> , 2013 , 79, 172-83	7.9	91
120	Dynamic functional connectivity: promise, issues, and interpretations. <i>NeuroImage</i> , 2013 , 80, 360-78	7.9	1571
119	Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. <i>Journal of Neuroscience</i> , 2013 , 33, 11239-52	6.6	333
118	Resting state network estimation in individual subjects. <i>NeuroImage</i> , 2013 , 82, 616-633	7.9	174
117	Resting state functional connectivity of the ventral attention network in children with a history of depression or anxiety. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2013 , 52, 13	26-133	36.e5
116	Distinct representations for shifts of spatial attention and changes of reward contingencies in the human brain. <i>Cortex</i> , 2013 , 49, 1733-49	3.8	27
115	Anatomical segregation of visual selection mechanisms in human parietal cortex. <i>Journal of Neuroscience</i> , 2013 , 33, 6225-9	6.6	36
114	A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. <i>Neurosurgery</i> , 2013 , 73, 969-82; discussion 982-3	3.2	100

(2011-2013)

113	Brain mapping in a patient with congenital blindness - a case for multimodal approaches. <i>Frontiers in Human Neuroscience</i> , 2013 , 7, 431	3.3	13
112	Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain-computer interfaces in hemiplegic stroke survivors. <i>Journal of Neural Engineering</i> , 2012 , 9, 036011	5	40
111	A cortical core for dynamic integration of functional networks in the resting human brain. <i>Neuron</i> , 2012 , 74, 753-64	13.9	319
110	Interspecies activity correlations reveal functional correspondence between monkey and human brain areas. <i>Nature Methods</i> , 2012 , 9, 277-82	21.6	78
109	Prediction of discharge walking ability from initial assessment in a stroke inpatient rehabilitation facility population. <i>Archives of Physical Medicine and Rehabilitation</i> , 2012 , 93, 1441-7	2.8	44
108	Functional network dysfunction in anxiety and anxiety disorders. <i>Trends in Neurosciences</i> , 2012 , 35, 527-	35 .3	328
107	Why use a connectivity-based approach to study stroke and recovery of function?. <i>NeuroImage</i> , 2012 , 62, 2271-80	7.9	213
106	Data-driven analysis of analogous brain networks in monkeys and humans during natural vision. <i>NeuroImage</i> , 2012 , 63, 1107-18	7.9	24
105	Individual variability in functional connectivity predicts performance of a perceptual task. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 3516-21	11.5	198
104	Clustering of resting state networks. <i>PLoS ONE</i> , 2012 , 7, e40370	3.7	124
103	Large-scale cortical correlation structure of spontaneous oscillatory activity. <i>Nature Neuroscience</i> , 2012 , 15, 884-90	25.5	674
102	Functional connectivity and neurological recovery. <i>Developmental Psychobiology</i> , 2012 , 54, 239-53	3	64
101	Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO. <i>PLoS Computational Biology</i> , 2012 , 8, e1002513	5	40
100	Differential contribution of right and left parietal cortex to the control of spatial attention: a simultaneous EEG-rTMS study. <i>Cerebral Cortex</i> , 2012 , 22, 446-54	5.1	58
99	Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. <i>Neurorehabilitation and Neural Repair</i> , 2012 , 26, 7-19	4.7	146
98	Electrophysiological correlates of stimulus-driven reorienting deficits after interference with right parietal cortex during a spatial attention task: a TMS-EEG study. <i>Journal of Cognitive Neuroscience</i> , 2012 , 24, 2363-71	3.1	32
97	Orienting to the EnvironmentSeparate Contributions of Dorsal and Ventral Frontoparietal Attention Networks 2012 , 100-130		7
96	Spatial neglect and attention networks. <i>Annual Review of Neuroscience</i> , 2011 , 34, 569-99	17	796

95	Functional connectivity in resting-state fMRI: is linear correlation sufficient?. NeuroImage, 2011, 54, 221	18725	119
94	The dynamical balance of the brain at rest. <i>Neuroscientist</i> , 2011 , 17, 107-23	7.6	223
93	False Belief vs. False Photographs: A Test of Theory of Mind or Working Memory?. <i>Frontiers in Psychology</i> , 2011 , 2, 316	3.4	9
92	A behavioral analysis of spatial neglect and its recovery after stroke. <i>Frontiers in Human Neuroscience</i> , 2011 , 5, 29	3.3	97
91	Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. <i>Journal of Neuroscience</i> , 2011 , 31, 4407-20	6.6	346
90	A signal-processing pipeline for magnetoencephalography resting-state networks. <i>Brain Connectivity</i> , 2011 , 1, 49-59	2.7	71
89	The brain recovery core: building a system of organized stroke rehabilitation and outcomes assessment across the continuum of care. <i>Journal of Neurologic Physical Therapy</i> , 2011 , 35, 194-201	4.1	23
88	Neurological principles and rehabilitation of action disorders: computation, anatomy, and physiology (CAP) model. <i>Neurorehabilitation and Neural Repair</i> , 2011 , 25, 6S-20S	4.7	46
87	Neurological principles and rehabilitation of action disorders: rehabilitation interventions. <i>Neurorehabilitation and Neural Repair</i> , 2011 , 25, 33S-43S	4.7	84
86	Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 19	066-71	201
86 85	Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 19 The effect of age on human motor electrocorticographic signals and implications for brain-computer interface applications. <i>Journal of Neural Engineering</i> , 2011 , 8, 046013	0 66-7 1	201
	sclerosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 19 The effect of age on human motor electrocorticographic signals and implications for		
85	sclerosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 19 The effect of age on human motor electrocorticographic signals and implications for brain-computer interface applications. <i>Journal of Neural Engineering</i> , 2011 , 8, 046013 Neurological principles and rehabilitation of action disorders: common clinical deficits.	5	12
8 ₅	The effect of age on human motor electrocorticographic signals and implications for brain-computer interface applications. <i>Journal of Neural Engineering</i> , 2011 , 8, 046013 Neurological principles and rehabilitation of action disorders: common clinical deficits. <i>Neurorehabilitation and Neural Repair</i> , 2011 , 25, 21S-32S	5 4.7	12 58
85 84 83	The effect of age on human motor electrocorticographic signals and implications for brain-computer interface applications. <i>Journal of Neural Engineering</i> , 2011 , 8, 046013 Neurological principles and rehabilitation of action disorders: common clinical deficits. <i>Neurorehabilitation and Neural Repair</i> , 2011 , 25, 21S-32S Neural rehabilitation: action and manipulation. <i>Neurorehabilitation and Neural Repair</i> , 2011 , 25, 3S-5S Ten years of Nature Reviews Neuroscience: insights from the highly cited. <i>Nature Reviews</i>	5 4·7 4·7	12 58 4
85 84 83 82	The effect of age on human motor electrocorticographic signals and implications for brain-computer interface applications. <i>Journal of Neural Engineering</i> , 2011 , 8, 046013 Neurological principles and rehabilitation of action disorders: common clinical deficits. <i>Neurorehabilitation and Neural Repair</i> , 2011 , 25, 21S-32S Neural rehabilitation: action and manipulation. <i>Neurorehabilitation and Neural Repair</i> , 2011 , 25, 3S-5S Ten years of Nature Reviews Neuroscience: insights from the highly cited. <i>Nature Reviews Neuroscience</i> , 2010 , 11, 718-26 Comment on "Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI" and "Homeostatic sleep pressure and responses to sustained attention in the	5 4·7 4·7	12 58 4 26
85 84 83 82 81	The effect of age on human motor electrocorticographic signals and implications for brain-computer interface applications. <i>Journal of Neural Engineering</i> , 2011 , 8, 046013 Neurological principles and rehabilitation of action disorders: common clinical deficits. <i>Neurorehabilitation and Neural Repair</i> , 2011 , 25, 21S-32S Neural rehabilitation: action and manipulation. <i>Neurorehabilitation and Neural Repair</i> , 2011 , 25, 3S-5S Ten years of Nature Reviews Neuroscience: insights from the highly cited. <i>Nature Reviews Neuroscience</i> , 2010 , 11, 718-26 Comment on "Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI" and "Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area". <i>Science</i> , 2010 , 328, 309; author reply 309 Right hemisphere dominance during spatial selective attention and target detection occurs outside	5 4·7 4·7 13·5	12 58 4 26 32

(2007-2010)

77	Temporal dynamics of spontaneous MEG activity in brain networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 6040-5	11.5	531
76	Comment on "Modafinil Shifts Human Locus Coeruleus to Low-Tonic, High-Phasic Activity During Functional MRI" and "Homeostatic Sleep Pressure and Responses to Sustained Attention in the Suprachiasmatic Area". <i>Science</i> , 2010 , 328, 309-309	33.3	56
75	Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. <i>Annals of Neurology</i> , 2010 , 67, 365-75	9.4	498
74	Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks. <i>Brain Topography</i> , 2010 , 23, 150-8	4.3	25
73	Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. <i>Journal of Neuroscience</i> , 2009 , 29, 4392-407	6.6	307
72	Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal. <i>Journal of Neuroscience</i> , 2009 , 29, 10671-82	6.6	63
71	Learning sculpts the spontaneous activity of the resting human brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 17558-63	11.5	589
70	Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. <i>Journal of Neuroscience</i> , 2009 , 29, 5863-72	6.6	334
69	Task-evoked BOLD responses are normal in areas of diaschisis after stroke. <i>Neurorehabilitation and Neural Repair</i> , 2009 , 23, 52-7	4.7	10
68	Is the posner reaction time test more accurate than clinical tests in detecting left neglect in acute and chronic stroke?. <i>Archives of Physical Medicine and Rehabilitation</i> , 2009 , 90, 2081-8	2.8	70
67	Unravelling nonverbal cognitive performance in acquired aphasiaView all notes. <i>Aphasiology</i> , 2009 , 23, 1418-1426	1.6	39
66	Large-scale brain networks account for sustained and transient activity during target detection. <i>NeuroImage</i> , 2009 , 44, 265-74	7.9	127
65	Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. <i>Nature Neuroscience</i> , 2008 , 11, 1446-53	25.5	166
64	The reorienting system of the human brain: from environment to theory of mind. <i>Neuron</i> , 2008 , 58, 306	5- 24 .9	2635
63	Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. <i>Journal of Neuroscience</i> , 2008 , 28, 10056-61	6.6	408
62	Anticipatory suppression of nonattended locations in visual cortex marks target location and predicts perception. <i>Journal of Neuroscience</i> , 2008 , 28, 6549-56	6.6	47
61	Sequential activation of human oculomotor centers during planning of visually-guided eye movements: a combined fMRI-MEG study. <i>Frontiers in Human Neuroscience</i> , 2007 , 1, 1	3.3	25
60	Asymmetry of anticipatory activity in visual cortex predicts the locus of attention and perception. Journal of Neuroscience, 2007 , 27, 14424-33	6.6	94

59	Electrophysiological signatures of resting state networks in the human brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 13170-5	11.5	1415
58	Changing human visual field organization from early visual to extra-occipital cortex. <i>PLoS ONE</i> , 2007 , 2, e452	3.7	40
57	Anatomical correlates of directional hypokinesia in patients with hemispatial neglect. <i>Journal of Neuroscience</i> , 2007 , 27, 4045-51	6.6	59
56	Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. <i>Cerebral Cortex</i> , 2007 , 17, 2625-33	5.1	200
55	The role of impaired neuronal communication in neurological disorders. <i>Current Opinion in Neurology</i> , 2007 , 20, 655-60	7.1	102
54	Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. <i>Neuron</i> , 2007 , 53, 905-18	13.9	729
53	Attentional selection of moving objects by a serial process. Vision Research, 2006, 46, 3403-12	2.1	14
52	Cerebellar activity switches hemispheres with cerebral recovery in aphasia. <i>Neuropsychologia</i> , 2006 , 44, 171-7	3.2	27
51	Distribution of activity across the monkey cerebral cortical surface, thalamus and midbrain during rapid, visually guided saccades. <i>Cerebral Cortex</i> , 2006 , 16, 447-59	5.1	76
50	Aphasia severity, semantics, and depression predict functional communication in acquired aphasia. <i>Aphasiology</i> , 2006 , 20, 449-461	1.6	35
49	Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 10046-51	11.5	1515
48	Losing our brainless minds: how neuroimaging informs cognition. <i>Cortex</i> , 2006 , 42, 418-21; discussion 422-7	3.8	5
47	Separate modulations of human V1 associated with spatial attention and task structure. <i>Neuron</i> , 2006 , 51, 135-47	13.9	90
46	Visuospatial reorienting signals in the human temporo-parietal junction are independent of response selection. <i>European Journal of Neuroscience</i> , 2006 , 23, 591-6	3.5	83
45	Models of human visual attention should consider trial-by-trial variability in preparatory neural signals. <i>Neural Networks</i> , 2006 , 19, 1447-9	9.1	9
44	Laboratory of attention and brain recovery at Washington University, St. Louis. <i>Cognitive Processing</i> , 2006 , 7, 209-11	1.5	
43	The human brain is intrinsically organized into dynamic, anticorrelated functional networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 9673-8	11.5	6098
42	Is the extrastriate body area involved in motor actions?. <i>Nature Neuroscience</i> , 2005 , 8, 125-126	25.5	33

(1999-2005)

41	Neural basis and recovery of spatial attention deficits in spatial neglect. <i>Nature Neuroscience</i> , 2005 , 8, 1603-10	25.5	652
40	A functional MRI study of preparatory signals for spatial location and objects. <i>Neuropsychologia</i> , 2005 , 43, 2041-56	3.2	79
39	A process for translating evidence-based aphasia treatment into clinical practice. <i>Aphasiology</i> , 2005 , 19, 411-422	1.6	16
38	An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. <i>Journal of Neuroscience</i> , 2005 , 25, 4593-604	6.6	436
37	Brain signals for spatial attention predict performance in a motion discrimination task. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 17810-5	11.5	93
36	Extrastriate body area in human occipital cortex responds to the performance of motor actions. <i>Nature Neuroscience</i> , 2004 , 7, 542-8	25.5	482
35	The study of neural connectivity using diffusion tensor tracking. <i>Cortex</i> , 2004 , 40, 213-5	3.8	9
34	Quantitative analysis of attention and detection signals during visual search. <i>Journal of Neurophysiology</i> , 2003 , 90, 3384-97	3.2	196
33	Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. <i>Journal of Neuroscience</i> , 2003 , 23, 4689-99	6.6	522
32	Identification of cerebral networks by classification of the shape of BOLD responses. <i>Journal of Neurophysiology</i> , 2003 , 90, 360-71	3.2	18
31	Control of goal-directed and stimulus-driven attention in the brain. <i>Nature Reviews Neuroscience</i> , 2002 , 3, 201-15	13.5	8283
30	Neural systems for visual orienting and their relationships to spatial working memory. <i>Journal of Cognitive Neuroscience</i> , 2002 , 14, 508-23	3.1	540
29	Two attentional processes in the parietal lobe. Cerebral Cortex, 2002, 12, 1124-31	5.1	107
28	Functional reorganization and stability of somatosensory-motor cortical topography in a tetraplegic subject with late recovery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 17066-71	11.5	73
27	Reactivation of networks involved in preparatory states. <i>Cerebral Cortex</i> , 2002 , 12, 590-600	5.1	41
26	Word retrieval learning modulates right frontal cortex in patients with left frontal damage. <i>Neuron</i> , 2002 , 36, 159-70	13.9	132
25	Voluntary orienting is dissociated from target detection in human posterior parietal cortex. <i>Nature Neuroscience</i> , 2000 , 3, 292-7	25.5	1458
24	Areas involved in encoding and applying directional expectations to moving objects. <i>Journal of Neuroscience</i> , 1999 , 19, 9480-96	6.6	255

23	A common network of functional areas for attention and eye movements. <i>Neuron</i> , 1998 , 21, 761-73	13.9	1348
22	Human cortical mechanisms of visual attention during orienting and search. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1998 , 353, 1353-62	5.8	142
21	Common Blood Flow Changes across Visual Tasks: I. Increases in Subcortical Structures and Cerebellum but Not in Nonvisual Cortex. <i>Journal of Cognitive Neuroscience</i> , 1997 , 9, 624-47	3.1	139
20	Influence of stimulus salience and attentional demands on visual search patterns in hemispatial neglect. <i>Brain and Cognition</i> , 1997 , 34, 388-403	2.7	57
19	Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. <i>Journal of Cognitive Neuroscience</i> , 1997 , 9, 648-63	3.1	1462
18	Searching for activations that generalize over tasks. <i>Human Brain Mapping</i> , 1997 , 5, 317-22	5.9	59
17	Preserved speech abilities and compensation following prefrontal damage. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 , 93, 1249-53	11.5	117
16	Thumb-pointing is humans after damage to somatic sensory cortex. <i>Experimental Brain Research</i> , 1996 , 109, 92-100	2.3	15
15	Oculomotor activity and visual spatial attention. <i>Behavioural Brain Research</i> , 1995 , 71, 81-8	3.4	58
14	Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. <i>Science</i> , 1995 , 270, 802-5	33.3	613
13	The McCollough effect reveals orientation discrimination in a case of cortical blindness. <i>Current Biology</i> , 1995 , 5, 545-51	6.3	62
12	Positron emission tomography as a tool to study human vision and attention. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1993 , 90, 10901-3	11.5	23
11	Neuroimaging. Current Opinion in Neurobiology, 1992 , 2, 217-22	7.6	12
10	Selective attention modulates extrastriate visual regions in humans during visual feature discrimination and recognition. <i>Novartis Foundation Symposium</i> , 1991 , 163, 165-75; discussion 175-80		11
9	Brain mapping of attention and neglect after stroke133-144		
8	Functional brain imaging and neurological recovery162-181		3
7	Recovery of neural dynamics criticality in personalized whole brain models of stroke		2
6	Lesion Quantification Toolkit: A MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions		1

LIST OF PUBLICATIONS

5	in stroke	1
4	Archetypes in human behavior and their brain correlates: An evolutionary trade-off approach	2
3	Attentional Modulation of Macaque Visual Processing Areas	1
2	Structural disconnections explain brain network dysfunction after stroke	1
1	Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions	3