Stephen M Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1578562/publications.pdf

Version: 2024-02-01

52

all docs

49 1,588 19 papers citations h-index

52

docs citations

h-index g-index

52 3260
times ranked citing authors

39

#	Article	IF	Citations
1	Structured Organic–Inorganic Perovskite toward a Distributed Feedback Laser. Advanced Materials, 2016, 28, 923-929.	21.0	257
2	Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nature Communications, 2017, 8, 14734.	12.8	184
3	Strain-Mediated Interlayer Coupling Effects on the Excitonic Behaviors in an Epitaxially Grown MoS ₂ /WS ₂ van der Waals Heterobilayer. Nano Letters, 2017, 17, 5634-5640.	9.1	169
4	Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. Nano Letters, 2015, 15, 4935-4941.	9.1	117
5	Thermodynamically Stable Synthesis of Largeâ€Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n–n Heterojunction Devices. Advanced Materials, 2017, 29, 1702206.	21.0	116
6	Optically Switchable Smart Windows with Integrated Photovoltaic Devices. Advanced Energy Materials, 2015, 5, 1401347.	19.5	81
7	Consecutive Junction-Induced Efficient Charge Separation Mechanisms for High-Performance MoS ₂ /Quantum Dot Phototransistors. ACS Applied Materials & Interfaces, 2018, 10, 38264-38271.	8.0	58
8	Direct Epitaxial Synthesis of Selective Two-Dimensional Lateral Heterostructures. ACS Nano, 2019, 13, 13047-13055.	14.6	52
9	Solubility-Dependent NiMoO ₄ Nanoarchitectures: Direct Correlation between Rationally Designed Structure and Electrochemical Pseudokinetics. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35227-35234.	8.0	37
10	Balancing Charge Carrier Transport in a Quantum Dot P–N Junction toward Hysteresis-Free High-Performance Solar Cells. ACS Energy Letters, 2018, 3, 1036-1043.	17.4	37
11	Spatially Patterned Polymer Dispersed Liquid Crystals for Imageâ€Integrated Smart Windows. Advanced Optical Materials, 2022, 10, .	7.3	36
12	Enhanced Ferroelectric Property of P(VDFâ€TrFEâ€CTFE) Film Using Roomâ€Temperature Crystallization for Highâ€Performance Ferroelectric Device Applications. Advanced Electronic Materials, 2016, 2, 1600225.	5.1	34
13	Electrically-tunable positioning of topological defects in liquid crystals. Nature Communications, 2020, 11, 2203.	12.8	34
14	Read on Demand Images in Laserâ€Written Polymerizable Liquid Crystal Devices. Advanced Optical Materials, 2018, 6, 1800515.	7.3	31
15	Charge Transport Modulation of a Flexible Quantum Dot Solar Cell Using a Piezoelectric Effect. Advanced Energy Materials, 2018, 8, 1700809.	19.5	30
16	Enhanced charge carrier transport properties in colloidal quantum dot solar cells via organic and inorganic hybrid surface passivation. Journal of Materials Chemistry A, 2016, 4, 18769-18775.	10.3	29
17	High speed liquid crystal over silicon display based on the flexoelectro-optic effect. Optics Express, 2009, 17, 7130.	3.4	23
18	Red green blue emissive lead sulfide quantum dots: heterogeneous synthesis and applications. Journal of Materials Chemistry C, 2017, 5, 3692-3698.	5.5	23

#	Article	IF	CITATIONS
19	Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching. Journal of Applied Physics, 2016, 119, .	2.5	20
20	Room Temperature Wafer-Scale Synthesis of Highly Transparent, Conductive CuS Nanosheet Films via a Simple Sulfur Adsorption-Corrosion Method. ACS Applied Materials & Interfaces, 2021, 13, 4244-4252.	8.0	19
21	Polarized Phosphorescence of Isotropic and Metalâ€Based Clustomesogens Dispersed into Chiral Nematic Liquid Crystalline Films. Advanced Optical Materials, 2015, 3, 1368-1372.	7.3	17
22	3D Switchable Diffractive Optical Elements Fabricated with Twoâ€Photon Polymerization. Advanced Optical Materials, 2022, 10, .	7.3	16
23	A Thinâ€Film Flexible Defectâ€Mode Laser. Advanced Optical Materials, 2020, 8, 1901891.	7.3	14
24	Dropâ€onâ€Demand Inkjet Printing of Thermally Tunable Liquid Crystal Microlenses. Advanced Engineering Materials, 2018, 20, 1700774.	3 . 5	13
25	Speckle contrast reduction of laser light using a chiral nematic liquid crystal diffuser. Applied Physics Letters, 2016, 109, .	3.3	12
26	Flexoelectro-optic liquid crystal analog phase-only modulator with a 2π range and 1  kHz switching. Optics Letters, 2018, 43, 4362.	3.3	12
27	Plasmonic Effects of Dual-Metal Nanoparticle Layers for High-Performance Quantum Dot Solar Cells. Plasmonics, 2020, 15, 1007-1013.	3.4	12
28	Twoâ€Photon Laserâ€Written Photoalignment Layers for Patterning Liquid Crystalline Conjugated Polymer Orientation. Advanced Functional Materials, 2021, 31, 2007493.	14.9	12
29	A Compact Full 2Ï€ Flexoelectroâ€Optic Liquid Crystal Phase Modulator. Advanced Materials Technologies, 2020, 5, 2000589.	5.8	9
30	Electrically Tunable Printed Bifocal Liquid Crystal Microlens Arrays. Advanced Materials Interfaces, 2020, 7, 2000578.	3.7	9
31	Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector. Scientific Reports, 2019, 9, 7016.	3.3	8
32	Enhancing laser speckle reduction by decreasing the pitch of a chiral nematic liquid crystal diffuser. Scientific Reports, 2021, 11, 4818.	3.3	8
33	Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants. Optical Materials, 2015, 42, 441-448.	3.6	7
34	Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices. Optics Express, 2018, 26, 6126.	3.4	7
35	Millisecond Optical Phase Modulation Using Multipass Configurations with Liquid-Crystal Devices. Physical Review Applied, 2020, 14, .	3.8	7
36	Flexible Solar Cells: Charge Transport Modulation of a Flexible Quantum Dot Solar Cell Using a Piezoelectric Effect (Adv. Energy Mater. 3/2018). Advanced Energy Materials, 2018, 8, 1870012.	19.5	6

#	Article	IF	CITATIONS
37	Dynamic response of large tilt-angle flexoelectro-optic liquid crystal modulators. Optics Express, 2019, 27, 15184.	3.4	5
38	Chiral switches bring new twist to photonics. Nature Photonics, 2022, 16, 174-175.	31.4	5
39	Characterization of large tilt-angle flexoelectro-optic switching in chiral nematic liquid crystal devices. Liquid Crystals, 2019, 46, 408-414.	2.2	3
40	Active Metamaterials with Negative Static Electric Susceptibility. Advanced Materials, 2020, 32, e1904863.	21.0	3
41	Laser Speckle Reduction Using a Liquid Crystal Diffuser Enhanced with Redox Dopants. Advanced Photonics Research, 2021, 2, 2000184.	3.6	3
42	Porous nematic microfluidics for generation of umbilic defects and umbilic defect lattices. Physical Review Fluids, $2016,1,1$	2.5	3
43	Robust measurement of flexoelectro-optic switching with different surface alignments. Journal of Applied Physics, 2019, 125, 093104.	2.5	2
44	Transmissive flexoelectro-optic liquid crystal optical phase modulator with 2Ï€ modulation. AIP Advances, 2020, 10, 055011.	1.3	2
45	Free-Form Laser Profilometry for Pipeline Inspection and 3D Cylindrical Reconstructions. IEEE Sensors Journal, 2022, 22, 297-303.	4.7	2
46	Energy Harvesting: Optically Switchable Smart Windows with Integrated Photovoltaic Devices (Adv.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
47	Flexible Lasers: A Thinâ€Film Flexible Defectâ€Mode Laser (Advanced Optical Materials 8/2020). Advanced Optical Materials, 2020, 8, 2070034.	7.3	1
48	Dynamic phase measurement of fast liquid crystal phase modulators. Optics Express, 2022, 30, 24788.	3.4	1
49	Stabilizing the uniform lying helix alignment in chiral nematic liquid crystals using direct laser writing. Ferroelectrics, 2016, 495, 167-173.	0.6	O