
Toshihiro Miyata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1578499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photovoltaic properties of low-damage magnetron-sputtered n-type ZnO thin film/p-type Cu2O sheet heterojunction solar cells. Thin Solid Films, 2020, 697, 137825.	0.8	17
2	Electron Scattering from Disordered Grain Boundaries in Degenerate Polycrystalline Alâ€Đoped ZnO Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1700783.	0.8	3
3	Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering. Thin Solid Films, 2016, 614, 56-61.	0.8	9
4	Efficiency enhancement using a Zn _{1â^'} _x Ge _x -O thin film as an n-type window layer in Cu ₂ O-based heterojunction solar cells. Applied Physics Express, 2016, 9, 052301.	1.1	152
5	Efficiency enhanced solar cells with a Cu2O homojunction grown epitaxially on p-Cu2O:Na sheets by electrochemical deposition. MRS Communications, 2016, 6, 416-420.	0.8	11
6	Electrochemically deposited Cu2O thin films on thermally oxidized Cu2O sheets for solar cell applications. Solar Energy Materials and Solar Cells, 2016, 155, 405-410.	3.0	36
7	Cu ₂ O-based solar cells using oxide semiconductors. Journal of Semiconductors, 2016, 37, 014002.	2.0	50
8	Relationship between the electrical properties of the n-oxide and p-Cu 2 O layers and the photovoltaic properties of Cu 2 O-based heterojunction solar cells. Solar Energy Materials and Solar Cells, 2016, 147, 85-93.	3.0	39
9	Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu ₂ O sheet. Applied Physics Express, 2015, 8, 022301.	1.1	157
10	Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications. Applied Physics Letters, 2014, 105, .	1.5	50
11	Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure. Solar Energy, 2014, 105, 206-217.	2.9	79
12	Efficiency improvement of Cu2O-based heterojunction solar cells fabricated using thermally oxidized copper sheets. Thin Solid Films, 2014, 559, 105-111.	0.8	38
13	Influence of the kind and content of doped impurities on impurity-doped ZnO transparent electrode applications in thin-film solar cells. Thin Solid Films, 2013, 534, 426-431.	0.8	18
14	High-Efficiency Cu ₂ O-Based Heterojunction Solar Cells Fabricated Using a Ga ₂ O ₃ Thin Film as N-Type Layer. Applied Physics Express, 2013, 6, 044101.	1.1	257
15	The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells. Thin Solid Films, 2013, 528, 72-76.	0.8	70
16	Effect of inserting a thin buffer layer on the efficiency in <i>n</i> -ZnO/ <i>p</i> -Cu2O heterojunction solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	39
17	Impurity-doped ZnO Thin Films Prepared by Physical Deposition Methods Appropriate for Transparent Electrode Applications in Thin-film Solar Cells. IOP Conference Series: Materials Science and Engineering, 2012, 34, 012001.	0.3	16
18	Influence of rapid thermal annealing on surface texture-etched Al-doped ZnO films prepared by various magnetron sputtering methods. Thin Solid Films, 2012, 520, 3803-3807.	0.8	13

Τοςηιηίο Μιγατά

#	Article	IF	CITATIONS
19	High-Efficiency Oxide Solar Cells with ZnO/Cu ₂ 0 Heterojunction Fabricated on Thermally Oxidized Cu ₂ 0 Sheets. Applied Physics Express, 2011, 4, 062301.	1.1	233
20	Color control of emissions from rare earth-co-doped La2O3:Bi phosphor thin films prepared by magnetron sputtering. Thin Solid Films, 2011, 519, 8095-8099.	0.8	13
21	Preparation of Al-doped ZnO transparent electrodes suitable for thin-film solar cell applications by various types of magnetron sputtering depositions. Thin Solid Films, 2011, 520, 1400-1406.	0.8	93
22	Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	0.9	12
23	Blue PL and EL emissions from Bi-activated binary oxide thin-film phosphors. Thin Solid Films, 2010, 518, 3067-3070.	0.8	28
24	Improvements of spatial resistivity distribution in transparent conducting Al-doped ZnO thin films deposited by DC magnetron sputtering. Thin Solid Films, 2010, 518, 2984-2987.	0.8	45
25	Comparative study of resistivity characteristics between transparent conducting AZO and GZO thin films for use at high temperatures. Thin Solid Films, 2010, 518, 2937-2940.	0.8	68
26	Effect of target properties on transparent conducting impurity-doped ZnO thin films deposited by DC magnetron sputtering. Thin Solid Films, 2010, 519, 385-390.	0.8	48
27	Effect of inserting a buffer layer on the characteristics of transparent conducting impurity-doped ZnO thin films prepared by dc magnetron sputtering. Thin Solid Films, 2010, 519, 1587-1593.	0.8	34
28	Luminescent characteristics in blue-emitting Bi-activated multicomponent oxide phosphor thin films. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C2B56-C2B61.	0.6	4
29	Resistivity characteristics of transparent conducting impurity-doped ZnO films for use in oxidizing environments at high temperatures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 861-866.	0.9	19
30	Transparent conducting impurity-doped ZnO thin films prepared using oxide targets sintered by millimeter-wave heating. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1006-1011.	0.9	7
31	Photoluminescent and electroluminescent characteristics of various Bi-activated niobate-based oxide phosphor thin films. Thin Solid Films, 2009, 517, 6054-6057.	0.8	14
32	Effect of spatial relationship between arc plasma and substrate on the properties of transparent conducting Ga-doped ZnO thin films prepared by vacuum arc plasma evaporation. Thin Solid Films, 2009, 517, 6824-6828.	0.8	5
33	PL and EL Characteristics in New Blue Emitting La2O3:Bi Phosphor Thin Films. ECS Transactions, 2009, 16, 39-45.	0.3	9
34	Transparent conducting Si-codoped Al-doped ZnO thin films prepared by magnetron sputtering using Al-doped ZnO powder targets containing SiC. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1001-1005.	0.9	11
35	Stability of nano-thick transparent conducting oxide films for use in a moist environment. Thin Solid Films, 2008, 516, 1354-1358.	0.8	42
36	Stability in a high humidity environment of TCO thin films deposited at low temperatures. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 255-260.	0.8	35

Τοςηιηίο Μιγατά

#	Article	IF	CITATIONS
37	Present status and future prospects for development of non- or reduced-indium transparent conducting oxide thin films. Thin Solid Films, 2008, 517, 1474-1477.	0.8	181
38	Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1172-1177.	0.9	36
39	Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment. Physica Status Solidi - Rapid Research Letters, 2007, 1, R31-R33.	1.2	68
40	New Transparent Conducting Al-doped ZnO Film Preparation Techniques for Improving Resistivity Distribution in Magnetron Sputtering Deposition. Japanese Journal of Applied Physics, 2006, 45, L409-L412.	0.8	67
41	Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunction devices. Thin Solid Films, 2006, 494, 47-52.	0.8	143
42	Blue-violet phosphate phosphor thin films for EL. Thin Solid Films, 2006, 496, 174-178.	0.8	3
43	P-type semiconducting Cu2O–NiO thin films prepared by magnetron sputtering. Journal of Materials Science, 2006, 41, 5531-5537.	1.7	18
44	Electrical and optical properties of TCO–Cu2O heterojunction devices. Thin Solid Films, 2004, 469-470, 80-85.	0.8	73
45	Highly transparent and conductive ZnO:Al thin films prepared by vacuum arc plasma evaporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1711-1715.	0.9	32
46	High-Efficiency Oxide Heterojunction Solar Cells Using Cu2O Sheets. Japanese Journal of Applied Physics, 2004, 43, L917-L919.	0.8	91
47	Low resistivity polycrystalline ZnO:Al thin films prepared by pulsed laser deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1757-1762.	0.9	91
48	Preparation of Mn-activated yttrium germanate phosphor thin films for electroluminescent devices. Thin Solid Films, 2003, 425, 35-40.	0.8	7
49	Transparent conducting ZnO thin films deposited by vacuum arc plasma evaporation. Thin Solid Films, 2003, 445, 268-273.	0.8	86
50	Transparent conducting V-co-doped AZO thin films prepared by magnetron sputtering. Thin Solid Films, 2003, 434, 14-19.	0.8	80
51	p-type semiconducting Cu2O–CoO thin films prepared by magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1336-1341.	0.9	20
52	High-rate deposition of ZnO thin films by vacuum arc plasma evaporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1404-1408.	0.9	24
53	New transparent conducting thin films using multicomponent oxides composed of ZnO and V2O5 prepared by magnetron sputtering. Thin Solid Films, 2002, 411, 76-81.	0.8	43
54	High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation. Thin Solid Films, 2002, 416, 92-96.	0.8	119

Τοςηιηίο Μιγατά

#	Article	IF	CITATIONS
55	Electrical Conduction Mechanism of Highly Transparent and Conductive ZnO Thin Films. Materials Research Society Symposia Proceedings, 2001, 666, 131.	0.1	47
56	Ozone gas sensors with high sensitivity using Zn2ln2O5–MgIn2O4 multicomponent oxide thin films. Surface and Coatings Technology, 2000, 126, 219-224.	2.2	14
57	Origin of electrical property distribution on the surface of ZnO:Al films prepared by magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1584-1589.	0.9	87
58	Stability of transparent conducting oxide films for use at high temperatures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1822-1826.	0.9	88
59	Mn-Activated CaO-Ga2O3 Phosphors for Thin-Film Electroluminescent Devices. Japanese Journal of Applied Physics, 1997, 36, L1191-L1194.	0.8	39
60	New Materials Consisting of Multicomponent Oxides for Thinâ€Film Gas Sensors. Journal of the Electrochemical Society, 1997, 144, 2432-2436.	1.3	20
61	High-Luminance Green Zn2SiO4:Mn Thin-Film Electroluminescent Devices Using an Insulating BaTiO3Ceramic Sheet. Japanese Journal of Applied Physics, 1991, 30, L117-L119.	0.8	92