
John I Glendinning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1576523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NIH Workshop Report: sensory nutrition and disease. American Journal of Clinical Nutrition, 2021, 113, 232-245.	2.2	19
2	Cephalic phase insulin release: A review of its mechanistic basis and variability in humans. Physiology and Behavior, 2021, 239, 113514.	1.0	15
3	What Does the Taste System Tell Us About the Nutritional Composition and Toxicity of Foods?. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	8
4	Low-calorie sweeteners cause only limited metabolic effects in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R70-R80.	0.9	13
5	Mixtures of Sweeteners and Maltodextrin Enhance Flavor and Intake of Alcohol in Adolescent Rats. Chemical Senses, 2020, 45, 675-685.	1.1	3
6	Olfaction contributes to the learned avidity for glucose relative to fructose in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R901-R916.	0.9	13
7	Taste of glucose elicits cephalic-phase insulin release in mice. Physiology and Behavior, 2018, 192, 200-205.	1.0	17
8	Oral and Postâ€Oral Actions of Lowâ€Calorie Sweeteners: A Tale of Contradictions and Controversies. Obesity, 2018, 26, S9-S17.	1.5	13
9	Postnatal Exposure to Ethanol Increases Its Oral Acceptability to Adolescent Rats. Chemical Senses, 2018, 43, 655-664.	1.1	6
10	Drug-Induced Taste Disorders In Clinical Practice And Preclinical Safety Evaluation. Toxicological Sciences, 2017, 156, kfw263.	1.4	22
11	Fetal alcohol exposure reduces responsiveness of taste nerves and trigeminal chemosensory neurons to ethanol and its flavor components. Journal of Neurophysiology, 2017, 118, 1198-1209.	0.9	9
12	Glucose elicits cephalic-phase insulin release in mice by activating K _{ATP} channels in taste cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R597-R610.	0.9	48
13	Genetics of Amino Acid Taste and Appetite. Advances in Nutrition, 2016, 7, 806S-822S.	2.9	64
14	Do low-calorie sweeteners promote weight gain in rodents?. Physiology and Behavior, 2016, 164, 509-513.	1.0	12
15	Taste Responsiveness to Sweeteners Is Resistant to Elevations in Plasma Leptin. Chemical Senses, 2015, 40, 223-231.	1.1	14
16	Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R552-R560.	0.9	69
17	Ruminant self-medication against gastrointestinal nematodes: evidence, mechanism, and origins. Parasite, 2014, 21, 31.	0.8	71
18	Experience with Sugar Modifies Behavioral but not Taste-Evoked Medullary Responses to Sweeteners in Mice, Chemical Senses, 2013, 38, 793-802.	1.1	10

JOHN I GLENDINNING

#	Article	IF	CITATIONS
19	Impact of T1r3 and Trpm5 on Carbohydrate Preference and Acceptance in C57BL/6 Mice. Chemical Senses, 2013, 38, 421-437.	1.1	37
20	Gustatory Receptor Neurons in Manduca sexta Contain a TrpA1-Dependent Signaling Pathway that Integrates Taste and Temperature. Chemical Senses, 2013, 38, 605-617.	1.1	17
21	Fetal ethanol exposure attenuates aversive oral effects of TrpV1, but not TrpA1 agonists in rats. Experimental Biology and Medicine, 2012, 237, 236-240.	1.1	22
22	Not all sugars are created equal: some mask aversive tastes better than others in an herbivorous insect. Journal of Experimental Biology, 2012, 215, 1412-1421.	0.8	30
23	The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice. Physiology and Behavior, 2012, 107, 50-58.	1.0	46
24	Identification of chemosensory receptor genes in Manduca sexta and knockdown by RNA interference. BMC Genomics, 2012, 13, 211.	1.2	25
25	Dissociation of Hedonic Reaction to Reward and Incentive Motivation in an Animal Model of the Negative Symptoms of Schizophrenia. Neuropsychopharmacology, 2012, 37, 1699-1707.	2.8	124
26	Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1643-R1650.	0.9	84
27	Differential effects of sucrose and fructose on dietary obesity in four mouse strains. Physiology and Behavior, 2010, 101, 331-343.	1.0	64
28	Fetal ethanol exposure increases ethanol intake by making it smell and taste better. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5359-5364.	3.3	84
29	T1R3 taste receptor is critical for sucrose but not Polycose taste. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R866-R876.	0.9	113
30	Linking peripheral taste processes to behavior. Current Opinion in Neurobiology, 2009, 19, 370-377.	2.0	93
31	Induced preference for host plant chemicals in the tobacco hornworm: contribution of olfaction and taste. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 591-601.	0.7	23
32	Intragastric infusion of denatonium conditions flavor aversions and delays gastric emptying in rodents. Physiology and Behavior, 2008, 93, 757-765.	1.0	89
33	Contribution of orosensory stimulation to strain differences in oil intake by mice. Physiology and Behavior, 2008, 95, 476-483.	1.0	19
34	The hungry caterpillar: an analysis of how carbohydrates stimulate feeding in <i>Manduca sexta</i> . Journal of Experimental Biology, 2007, 210, 3054-3067.	0.8	24
35	Fat and carbohydrate preferences in mice: the contribution of α-gustducin and Trpm5 taste-signaling proteins. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1504-R1513.	0.9	95
36	Allelic variation of the <i>Tas1r3</i> taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6- <i>Tas1r3</i> congenic mice. Physiological Genomics, 2007, 32, 82-94.	1.0	67

John I Glendinning

#	Article	IF	CITATIONS
37	Trpm5 Null Mice Respond to Bitter, Sweet, and Umami Compounds. Chemical Senses, 2006, 31, 253-264.	1.1	289
38	Sugar and fat conditioned flavor preferences in C57BL/6J and 129 mice: oral and postoral interactions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R712-R720.	0.9	114
39	Initial Licking Responses of Mice to Sweeteners: Effects of Tas1r3 Polymorphisms. Chemical Senses, 2005, 30, 601-614.	1.1	58
40	Contribution of α-Gustducin to Taste-guided Licking Responses of Mice. Chemical Senses, 2005, 30, 299-316.	1.1	95
41	A High-throughput Screening Procedure for Identifying Mice with Aberrant Taste and Oromotor Function. Chemical Senses, 2002, 27, 461-474.	1.1	168
42	Contribution of Different Taste Cells and Signaling Pathways to the Discrimination of "Bitter―Taste Stimuli by an Insect. Journal of Neuroscience, 2002, 22, 7281-7287.	1.7	71
43	Mice suppress malaria infection by sampling a â€`bitter' chemotherapy agent. Animal Behaviour, 2001, 61, 887-894.	0.8	32
44	Contribution of different bitter-sensitive taste cells to feeding inhibition in a caterpillar (Manduca) Tj ETQq0 0 0 r	gBT /Over	locန္ 10 Tf 50

45	Electrophysiological Evidence for Two Transduction Pathways Within a Bitter-Sensitive Taste Receptor. Journal of Neurophysiology, 1997, 78, 734-745.	0.9	65
46	Is the bitter rejection response always adaptive?. Physiology and Behavior, 1994, 56, 1217-1227.	1.0	432