Jonathan M Grasman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1576238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomaterialia, 2015, 25, 2-15.	4.1	178
2	Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces. Advanced Materials, 2018, 30, e1800598.	11.1	98
3	Human endothelial cells secrete neurotropic factors to direct axonal growth of peripheral nerves. Scientific Reports, 2017, 7, 4092.	1.6	55
4	Rapid release of growth factors regenerates force output in volumetric muscle loss injuries. Biomaterials, 2015, 72, 49-60.	5.7	52
5	Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering. Journal of Biomedical Materials Research - Part A, 2009, 91A, 1010-1017.	2.1	31
6	Recent Trends in Injury Models to Study Skeletal Muscle Regeneration and Repair. Bioengineering, 2020, 7, 76.	1.6	28
7	Crosslinking strategies facilitate tunable structural properties of fibrin microthreads. Acta Biomaterialia, 2012, 8, 4020-4030.	4.1	19
8	Self-assembling peptide hydrogels facilitate vascularization in two-component scaffolds. Chemical Engineering Journal, 2021, 422, 130145.	6.6	18
9	Static axial stretching enhances the mechanical properties and cellular responses of fibrin microthreads. Acta Biomaterialia, 2014, 10, 4367-4376.	4.1	17
10	Tissue Models for Neurogenesis and Repair in 3D. Advanced Functional Materials, 2018, 28, 1803822.	7.8	11
11	The Effect of Sterilization Methods on the Structural and Chemical Properties of Fibrin Microthread Scaffolds. Macromolecular Bioscience, 2016, 16, 836-846.	2.1	9
12	Hyperosmolar Potassium Inhibits Myofibroblast Conversion and Reduces Scar Tissue Formation. ACS Biomaterials Science and Engineering, 2019, 5, 5327-5336.	2.6	8
13	Design of an <i>In Vitro</i> Model of Cell Recruitment for Skeletal Muscle Regeneration Using Hepatocyte Growth Factor-Loaded Fibrin Microthreads. Tissue Engineering - Part A, 2017, 23, 773-783.	1.6	6
14	Angiogenic Hydrogels to Accelerate Early Wound Healing. Macromolecular Bioscience, 2022, 22, e2200067.	2.1	5
15	Exploiting biomechanics to direct the formation of nervous tissue. Current Opinion in Biomedical Engineering, 2020, 14, 59-66.	1.8	3
16	Jointly Optimized Spatial Histogram UNET Architecture (JOSHUA) for Adipose Tissue Segmentation. BME Frontiers, 2022, 2022, .	2.2	2
17	Enhancing cell recruitment onto crosslinked fibrin microthreads with hepatocyte growth factor. , 2014, , .		0