Qingbo Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1575797/qingbo-zhang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

7,082 48 32 53 h-index g-index citations papers 7,691 8.7 5.87 53 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
48	Controlled oxidation and surface modification increase heating capacity of magnetic iron oxide nanoparticles. <i>Applied Physics Reviews</i> , 2021 , 8, 031407	17.3	1
47	Lipid-Encapsulated Fe3O4 Nanoparticles for Multimodal Magnetic Resonance/Fluorescence Imaging. ACS Applied Nano Materials, 2020, 3, 6785-6797	5.6	15
46	Libraries of Uniform Magnetic Multicore Nanoparticles with Tunable Dimensions for Biomedical and Photonic Applications. <i>ACS Applied Materials & Discrete Section</i> , 12, 41932-41941	9.5	6
45	Silver Nanoparticle-Infused Cotton Fiber: Durability and Aqueous Release of Silver in Laundry Water. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 13231-13240	5.7	8
44	Latest progress in constructing solid-state Z scheme photocatalysts for water splitting. <i>Nanoscale</i> , 2019 , 11, 11071-11082	7.7	63
43	Etched PtCu nanowires as a peroxidase mimic for colorimetric determination of hydrogen peroxide. <i>Mikrochimica Acta</i> , 2019 , 186, 186	5.8	21
42	Ruddlesden-Popper Perovskites: Synthesis and Optical Properties for Optoelectronic Applications. <i>Advanced Science</i> , 2019 , 6, 1900941	13.6	65
41	Emission Recovery and Stability Enhancement of Inorganic Perovskite Quantum Dots. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 4166-4173	6.4	82
40	Tuning Ptfu nanostructures by bromide ions and their superior electrocatalytic activities for methanol oxidation reaction. <i>Journal of Nanoparticle Research</i> , 2018 , 20, 1	2.3	8
39	Magnetic field controlled graphene oxide-based origami with enhanced surface area and mechanical properties. <i>Nanoscale</i> , 2017 , 9, 6991-6997	7.7	29
38	Boiling water synthesis of ultrastable thiolated silver nanoclusters with aggregation-induced emission. <i>Chemical Communications</i> , 2015 , 51, 15165-8	5.8	112
37	Comparison of interactions between human serum albumin and silver nanoparticles of different sizes using spectroscopic methods. <i>Luminescence</i> , 2015 , 30, 397-404	2.5	37
36	Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. <i>Environmental Science & Technology</i> , 2015 , 49, 626-32	10.3	97
35	Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. <i>RSC Advances</i> , 2014 , 4, 60581-60596	3.7	113
34	Learning from nature: introducing an epiphyte-host relationship in the synthesis of alloy nanoparticles by co-reduction methods. <i>Chemical Communications</i> , 2014 , 50, 9765-8	5.8	6
33	Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. <i>Environmental Science & Environmental Science & Environme</i>	10.3	231
32	Architectural design of heterogeneous metallic nanocrystalsprinciples and processes. <i>Accounts of Chemical Research</i> , 2014 , 47, 3530-40	24.3	61

(2009-2013)

31	Engineering the architectural diversity of heterogeneous metallic nanocrystals. <i>Nature Communications</i> , 2013 , 4, 1454	17.4	88
30	Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	171
29	Guiding Principles in the Galvanic Replacement Reaction of an Underpotentially Deposited Metal Layer for Site-Selective Deposition and Shape and Size Control of Satellite Nanocrystals. <i>Chemistry of Materials</i> , 2013 , 25, 4746-4756	9.6	33
28	From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16662-70	16.4	1067
27	Highly luminescent Ag+ nanoclusters for Hg2+ ion detection. <i>Nanoscale</i> , 2012 , 4, 1968-71	7.7	116
26	Fast Synthesis of Thiolated Au25 Nanoclusters via Protection-Deprotection Method. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2310-4	6.4	66
25	One-step reverse precipitation synthesis of water-dispersible superparamagnetic magnetite nanoparticles. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	27
24	Negligible particle-specific antibacterial activity of silver nanoparticles. <i>Nano Letters</i> , 2012 , 12, 4271-5	11.5	1602
23	Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. <i>ACS Nano</i> , 2011 , 5, 8800-8	16.7	345
22	Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6251		450
22		7.7	450
	anode materials for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6251	7·7 3.8	
21	anode materials for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6251 Synthesis of shield-like singly twinned high-index Au nanoparticles. <i>Nanoscale</i> , 2011 , 3, 1497-500 Seed-Mediated Synthesis of Monodisperse Concave Trisoctahedral Gold Nanocrystals with		20
21	anode materials for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6251 Synthesis of shield-like singly twinned high-index Au nanoparticles. <i>Nanoscale</i> , 2011 , 3, 1497-500 Seed-Mediated Synthesis of Monodisperse Concave Trisoctahedral Gold Nanocrystals with Controllable Sizes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11119-11126 Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial	3.8	20
21 20 19	anode materials for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6251 Synthesis of shield-like singly twinned high-index Au nanoparticles. <i>Nanoscale</i> , 2011 , 3, 1497-500 Seed-Mediated Synthesis of Monodisperse Concave Trisoctahedral Gold Nanocrystals with Controllable Sizes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11119-11126 Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. <i>Journal of the American Chemical Society</i> , 2010 , 132, 18258-65 Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and	3.8	20 167 219
21 20 19	Synthesis of shield-like singly twinned high-index Au nanoparticles. <i>Nanoscale</i> , 2011 , 3, 1497-500 Seed-Mediated Synthesis of Monodisperse Concave Trisoctahedral Gold Nanocrystals with Controllable Sizes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11119-11126 Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. <i>Journal of the American Chemical Society</i> , 2010 , 132, 18258-65 Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and silver nanoparticles. <i>Nanoscale</i> , 2010 , 2, 1962-75 Chemical synthesis, structure characterization, and optical properties of hollow PbS(x)-solid Au	3.8 16.4 7.7	20 167 219
21 20 19 18	Synthesis of shield-like singly twinned high-index Au nanoparticles. <i>Nanoscale</i> , 2011 , 3, 1497-500 Seed-Mediated Synthesis of Monodisperse Concave Trisoctahedral Gold Nanocrystals with Controllable Sizes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11119-11126 Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. <i>Journal of the American Chemical Society</i> , 2010 , 132, 18258-65 Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and silver nanoparticles. <i>Nanoscale</i> , 2010 , 2, 1962-75 Chemical synthesis, structure characterization, and optical properties of hollow PbS(x)-solid Au heterodimer nanostructures. <i>Chemistry - A European Journal</i> , 2010 , 16, 5920-6	3.8 16.4 7.7 4.8	20 167 219 124 20

13	One-step synthesis and characterization of gold-hollow PbS(x) hybrid nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 3991-5	16.4	35
12	Colloidal Synthesis of Plasmonic Metallic Nanoparticles. <i>Plasmonics</i> , 2009 , 4, 9-22	2.4	70
11	Template-free synthesis of porous platinum networks of different morphologies. <i>Langmuir</i> , 2009 , 25, 6454-9	4	22
10	Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. <i>ACS Nano</i> , 2009 , 3, 139-48	16.7	167
9	The synthesis of SERS-active gold nanoflower tags for in vivo applications. <i>ACS Nano</i> , 2008 , 2, 2473-80	16.7	523
8	Carbon-Supported Pseudo-CoreShell Pd P t Nanoparticles for ORR with and without Methanol. <i>Journal of the Electrochemical Society</i> , 2008 , 155, B776	3.9	83
7	Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction. <i>Small</i> , 2008 , 4, 1067-71	11	132
6	General Method for Extended Metal Nanowire Synthesis: Ethanol Induced Self-Assembly. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 17158-17162	3.8	31
5	Size and composition tunable AgAu alloy nanoparticles by replacement reactions. <i>Nanotechnology</i> , 2007 , 18, 245605	3.4	114
4	Dissolution-recrystallization mechanism for the conversion of silver nanospheres to triangular nanoplates. <i>Journal of Colloid and Interface Science</i> , 2007 , 308, 157-61	9.3	58
3	Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition. <i>Journal of the American Chemical Society</i> , 2006 , 128, 11921-6	16.4	228
2	Synthesis and Application of Magnetic Nanocrystal Clusters. <i>Industrial & Description of Magnetic Nanocrystal Clusters</i> . <i>Industrial & Description of Magnetic Nanocrystal Clusters</i> . <i>Industrial & Description of Magnetic Nanocrystal Clusters</i> .	3.9	3
1	Atom-Precision Engineering Chemistry of Noble Metal Nanoparticles. <i>Industrial & Description of Noble Metal Nanoparticles</i> .	3.9	O