Qingbo Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1575797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano Letters, 2012, 12, 4271-4275.	4.5	1,830
2	From Aggregation-Induced Emission of Au(I)–Thiolate Complexes to Ultrabright Au(0)@Au(I)–Thiolate Core–Shell Nanoclusters. Journal of the American Chemical Society, 2012, 134, 16662-16670.	6.6	1,340
3	The Synthesis of SERS-Active Gold Nanoflower Tags for <i>In Vivo</i> Applications. ACS Nano, 2008, 2, 2473-2480.	7.3	578
4	Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 6251.	6.7	496
5	Synthesis of Highly Fluorescent Metal (Ag, Au, Pt, and Cu) Nanoclusters by Electrostatically Induced Reversible Phase Transfer. ACS Nano, 2011, 5, 8800-8808.	7.3	362
6	Size-Controlled Dissolution of Silver Nanoparticles at Neutral and Acidic pH Conditions: Kinetics and Size Changes. Environmental Science & Technology, 2014, 48, 11954-11961.	4.6	285
7	Synthesis of Nanocrystals with Variable High-Index Pd Facets through the Controlled Heteroepitaxial Growth of Trisoctahedral Au Templates. Journal of the American Chemical Society, 2010, 132, 18258-18265.	6.6	242
8	Rational Synthesis, Self-Assembly, and Optical Properties of PbSâ^'Au Heterogeneous Nanostructures via Preferential Deposition. Journal of the American Chemical Society, 2006, 128, 11921-11926.	6.6	240
9	Phytostimulation of Poplars and <i>Arabidopsis</i> Exposed to Silver Nanoparticles and Ag ⁺ at Sublethal Concentrations. Environmental Science & Technology, 2013, 47, 5442-5449.	4.6	201
10	Seed-Mediated Synthesis of Monodisperse Concave Trisoctahedral Gold Nanocrystals with Controllable Sizes. Journal of Physical Chemistry C, 2010, 114, 11119-11126.	1.5	187
11	Monodisperse Icosahedral Ag, Au, and Pd Nanoparticles: Size Control Strategy and Superlattice Formation. ACS Nano, 2009, 3, 139-148.	7.3	175
12	Synthesis of Ag@AgAu Metal Core/Alloy Shell Bimetallic Nanoparticles with Tunable Shell Compositions by a Galvanic Replacement Reaction. Small, 2008, 4, 1067-1071.	5.2	139
13	Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and silver nanoparticles. Nanoscale, 2010, 2, 1962.	2.8	134
14	Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. RSC Advances, 2014, 4, 60581-60596.	1.7	128
15	Boiling water synthesis of ultrastable thiolated silver nanoclusters with aggregation-induced emission. Chemical Communications, 2015, 51, 15165-15168.	2.2	128
16	Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions. Nanotechnology, 2007, 18, 245605.	1.3	127
17	Highly luminescent Ag+ nanoclusters for Hg2+ ion detection. Nanoscale, 2012, 4, 1968.	2.8	118
18	Fluorescence Reports Intact Quantum Dot Uptake into Roots and Translocation to Leaves of <i>Arabidopsis thaliana</i> and Subsequent Ingestion by Insect Herbivores. Environmental Science & Technology, 2015, 49, 626-632.	4.6	117

QINGBO ZHANG

#	Article	IF	CITATIONS
19	Ruddlesden–Popper Perovskites: Synthesis and Optical Properties for Optoelectronic Applications. Advanced Science, 2019, 6, 1900941.	5.6	112
20	Emission Recovery and Stability Enhancement of Inorganic Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 4166-4173.	2.1	108
21	Engineering the architectural diversity of heterogeneous metallic nanocrystals. Nature Communications, 2013, 4, 1454.	5.8	100
22	Synthesis of Monodisperse AgAu Alloy Nanoparticles with Independently Tunable Morphology, Composition, Size, and Surface Chemistry and Their 3â€Ð Superlattices. Advanced Functional Materials, 2009, 19, 1387-1398.	7.8	96
23	Carbon-Supported Pseudo-Core–Shell Pd–Pt Nanoparticles for ORR with and without Methanol. Journal of the Electrochemical Society, 2008, 155, B776.	1.3	87
24	Latest progress in constructing solid-state Z scheme photocatalysts for water splitting. Nanoscale, 2019, 11, 11071-11082.	2.8	84
25	Colloidal Synthesis of Plasmonic Metallic Nanoparticles. Plasmonics, 2009, 4, 9-22.	1.8	78
26	Fast Synthesis of Thiolated Au ₂₅ Nanoclusters via Protection–Deprotection Method. Journal of Physical Chemistry Letters, 2012, 3, 2310-2314.	2.1	71
27	Architectural Design of Heterogeneous Metallic Nanocrystals—Principles and Processes. Accounts of Chemical Research, 2014, 47, 3530-3540.	7.6	66
28	Tuning the Crystallinity of Au Nanoparticles. Small, 2010, 6, 523-527.	5.2	64
29	Dissolution–recrystallization mechanism for the conversion of silver nanospheres to triangular nanoplates. Journal of Colloid and Interface Science, 2007, 308, 157-161.	5.0	62
30	Comparison of interactions between human serum albumin and silver nanoparticles of different sizes using spectroscopic methods. Luminescence, 2015, 30, 397-404.	1.5	48
31	Guiding Principles in the Galvanic Replacement Reaction of an Underpotentially Deposited Metal Layer for Site-Selective Deposition and Shape and Size Control of Satellite Nanocrystals. Chemistry of Materials, 2013, 25, 4746-4756.	3.2	38
32	One‣tep Synthesis and Characterization of Gold–Hollow PbS _{<i>x</i>} Hybrid Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 3991-3995.	7.2	36
33	Magnetic field controlled graphene oxide-based origami with enhanced surface area and mechanical properties. Nanoscale, 2017, 9, 6991-6997.	2.8	36
34	General Method for Extended Metal Nanowire Synthesis:  Ethanol Induced Self-Assembly. Journal of Physical Chemistry C, 2007, 111, 17158-17162.	1.5	32
35	One-step reverse precipitation synthesis of water-dispersible superparamagnetic magnetite nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	31
36	Lipid-Encapsulated Fe ₃ O ₄ Nanoparticles for Multimodal Magnetic Resonance/Fluorescence Imaging. ACS Applied Nano Materials, 2020, 3, 6785-6797.	2.4	31

QINGBO ZHANG

#	Article	IF	CITATIONS
37	Etched PtCu nanowires as a peroxidase mimic for colorimetric determination of hydrogen peroxide. Mikrochimica Acta, 2019, 186, 186.	2.5	28
38	Template-Free Synthesis of Porous Platinum Networks of Different Morphologies. Langmuir, 2009, 25, 6454-6459.	1.6	22
39	Synthesis of shield-like singly twinned high-index Au nanoparticles. Nanoscale, 2011, 3, 1497.	2.8	21
40	Chemical Synthesis, Structure Characterization, and Optical Properties of Hollow PbS _{<i>x</i>} –Solid Au Heterodimer Nanostructures. Chemistry - A European Journal, 2010, 16, 5920-5926.	1.7	20
41	Libraries of Uniform Magnetic Multicore Nanoparticles with Tunable Dimensions for Biomedical and Photonic Applications. ACS Applied Materials & Interfaces, 2020, 12, 41932-41941.	4.0	16
42	Silver Nanoparticle-Infused Cotton Fiber: Durability and Aqueous Release of Silver in Laundry Water. Journal of Agricultural and Food Chemistry, 2020, 68, 13231-13240.	2.4	16
43	Multichannel power electronics and magnetic nanoparticles for selective thermal magnetogenetics. Journal of Neural Engineering, 2022, 19, 026015.	1.8	12
44	Tuning Pt–Cu nanostructures by bromide ions and their superior electrocatalytic activities for methanol oxidation reaction. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	11
45	Synthesis and Application of Magnetic Nanocrystal Clusters. Industrial & Engineering Chemistry Research, 2022, 61, 7613-7625.	1.8	9
46	Learning from nature: introducing an epiphyte–host relationship in the synthesis of alloy nanoparticles by co-reduction methods. Chemical Communications, 2014, 50, 9765-9768.	2.2	7
47	Controlled oxidation and surface modification increase heating capacity of magnetic iron oxide nanoparticles. Applied Physics Reviews, 2021, 8, .	5.5	7
48	Atom-Precision Engineering Chemistry of Noble Metal Nanoparticles. Industrial & Engineering Chemistry Research, 2022, 61, 7594-7612.	1.8	7
49	When function is biological: Discerning how silver nanoparticle structure dictates antimicrobial activity. IScience, 2022, 25, 104475.	1.9	7