Weiping Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1575553/publications.pdf Version: 2024-02-01

WEIDING YUAN

#	Article	lF	CITATIONS
1	Tracing haematopoietic stem cell formation at single-cell resolution. Nature, 2016, 533, 487-492.	27.8	297
2	Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nature Genetics, 2014, 46, 287-293.	21.4	213
3	Rictor/mTORC2 Is Essential for Maintaining a Balance Between β-Cell Proliferation and Cell Size. Diabetes, 2011, 60, 827-837.	0.6	136
4	Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation. Blood, 2015, 126, 1302-1313.	1.4	93
5	Combined Loss of Tet1 and Tet2 Promotes B Cell, but Not Myeloid Malignancies, in Mice. Cell Reports, 2015, 13, 1692-1704.	6.4	83
6	Antioxidant N-acetyl-l-cysteine increases engraftment of human hematopoietic stem cells in immune-deficient mice. Blood, 2014, 124, e45-e48.	1.4	74
7	ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver. Blood, 2015, 126, 2383-2391.	1.4	58
8	Rictor/mTORC2 Pathway in Oocytes Regulates Folliculogenesis, and Its Inactivation Causes Premature Ovarian Failure. Journal of Biological Chemistry, 2015, 290, 6387-6396.	3.4	58
9	Enhanced Generation of Integration-free iPSCs from Human Adult Peripheral Blood Mononuclear Cells with an Optimal Combination of Episomal Vectors. Stem Cell Reports, 2016, 6, 873-884.	4.8	48
10	Small-molecule inhibitors targeting INK4 protein p18INK4C enhance ex vivo expansion of haematopoietic stem cells. Nature Communications, 2015, 6, 6328.	12.8	47
11	Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow. Leukemia, 2016, 30, 154-162.	7.2	42
12	Reprogramming of MLL-AF9 leukemia cells into pluripotent stem cells. Leukemia, 2014, 28, 1071-1080.	7.2	40
13	Notch1-induced T cell leukemia can be potentiated by microenvironmental cues in the spleen. Journal of Hematology and Oncology, 2014, 7, 71.	17.0	35
14	Loss of Dnmt3b accelerates MLL-AF9 leukemia progression. Leukemia, 2016, 30, 2373-2384.	7.2	34
15	<i>PBX3</i> is essential for leukemia stem cell maintenance in <i>MLL</i> â€ŧearranged leukemia. International Journal of Cancer, 2017, 141, 324-335.	5.1	34
16	TET2 Loss Dysregulates the Behavior of Bone Marrow Mesenchymal Stromal Cells and Accelerates Tet2-Driven Myeloid Malignancy Progression. Stem Cell Reports, 2018, 10, 166-179.	4.8	34
17	Transcriptome analysis reveals a ribosome constituents disorder involved in the RPL5 downregulated zebrafish model of Diamond-Blackfan anemia. BMC Medical Genomics, 2016, 9, 13.	1.5	32
18	Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation. Nucleic Acids Research, 2017, 45, 657-671.	14.5	29

WEIPING YUAN

#	Article	IF	CITATIONS
19	Leukemia cell infiltration causes defective erythropoiesis partially through MIP-1α/CCL3. Leukemia, 2016, 30, 1897-1908.	7.2	28
20	Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates. Cell Discovery, 2018, 4, 4.	6.7	28
21	Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood. Stem Cell Research and Therapy, 2018, 9, 163.	5.5	27
22	Rictor Is Required for Early B Cell Development in Bone Marrow. PLoS ONE, 2014, 9, e103970.	2.5	26
23	2-D08 as a SUMOylation inhibitor induced ROS accumulation mediates apoptosis of acute myeloid leukemia cells possibly through the deSUMOylation of NOX2. Biochemical and Biophysical Research Communications, 2019, 513, 1063-1069.	2.1	25
24	The catalytic activity of TET2 is essential for its myeloid malignancy-suppressive function in hematopoietic stem/progenitor cells. Leukemia, 2016, 30, 1784-1788.	7.2	24
25	mTORC signaling in hematopoiesis. International Journal of Hematology, 2016, 103, 510-518.	1.6	23
26	Assessment of hematopoietic failure due to Rpl11 deficiency in a zebrafish model of Diamond-Blackfan anemia by deep sequencing. BMC Genomics, 2013, 14, 896.	2.8	22
27	Tet2 Regulates Osteoclast Differentiation by Interacting with Runx1 and Maintaining Genomic 5-Hydroxymethylcytosine (5hmC). Genomics, Proteomics and Bioinformatics, 2018, 16, 172-186.	6.9	22
28	Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia. Journal of Hematology and Oncology, 2016, 9, 36.	17.0	21
29	Transcriptome Analysis of the Zebrafish Model of Diamond-Blackfan Anemia from RPS19 Deficiency via p53-Dependent and -Independent Pathways. PLoS ONE, 2013, 8, e71782.	2.5	21
30	Rheb1-mTORC1 maintains macrophage differentiation and phagocytosis in mice. Experimental Cell Research, 2016, 344, 219-228.	2.6	20
31	Excessive proliferation and impaired function of primitive hematopoietic cells in bone marrow due to senescence post chemotherapy in a T cell acute lymphoblastic leukemia model. Journal of Translational Medicine, 2015, 13, 234.	4.4	19
32	Systematic transcriptome analysis of the zebrafish model of diamond-blackfan anemia induced by RPS24 deficiency. BMC Genomics, 2014, 15, 759.	2.8	18
33	Discovery of novel INK4C small-molecule inhibitors to promote human and murine hematopoietic stem cell ex vivo expansion. Scientific Reports, 2015, 5, 18115.	3.3	18
34	Will targeting PI3K/Akt/mTOR signaling work in hematopoietic malignancies?. Stem Cell Investigation, 2016, 3, 31-31.	3.0	18
35	PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression. Leukemia, 2022, 36, 370-382.	7.2	18
36	Epidermal growth factor receptor and <scp>AKT</scp> 1 gene copy numbers by multiâ€gene fluorescence <i>inÂsitu</i> hybridization impact on prognosis in breast cancer. Cancer Science, 2015, 106, 642-649.	3.9	17

WEIPING YUAN

#	Article	IF	CITATIONS
37	SUV39H1 regulates the progression of MLL-AF9-induced acute myeloid leukemia. Oncogene, 2020, 39, 7239-7252.	5.9	17
38	Graft-versus-Host Disease Causes Broad Suppression ofÂHematopoietic Primitive Cells and Blocks Megakaryocyte Differentiation in a Murine Model. Biology of Blood and Marrow Transplantation, 2014, 20, 1290-1300.	2.0	16
39	Rictor has a pivotal role in maintaining quiescence as well as stemness of leukemia stem cells in MLL-driven leukemia. Leukemia, 2017, 31, 414-422.	7.2	16
40	MBD2 Ablation Impairs Lymphopoiesis and Impedes Progression and Maintenance of T-ALL. Cancer Research, 2018, 78, 1632-1642.	0.9	15
41	Rheb1 loss leads to increased hematopoietic stem cell proliferation and myeloid-biased differentiation <i>in vivo</i> . Haematologica, 2019, 104, 245-255.	3.5	15
42	Rictor/mammalian target of rapamycin 2 regulates the development of notch1 induced murine T-cell acute lymphoblastic leukemia via forkhead box O3. Experimental Hematology, 2014, 42, 1031-1040.e4.	0.4	14
43	<i>Six1</i> regulates leukemia stem cell maintenance in acute myeloid leukemia. Cancer Science, 2019, 110, 2200-2210.	3.9	14
44	The kinase PDK1 is critical for promoting T follicular helper cell differentiation. ELife, 2021, 10, .	6.0	14
45	Phosphoinositide-dependent kinase 1 regulates leukemia stem cell maintenance in MLL-AF9-induced murine acute myeloid leukemia. Biochemical and Biophysical Research Communications, 2015, 459, 692-698.	2.1	13
46	Generation of Integration-free Induced Pluripotent Stem Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors. Journal of Visualized Experiments, 2017, , .	0.3	13
47	Identification of characteristic and prognostic values of chromosome 1p abnormality by multi-gene fluorescence in situ hybridization in multiple myeloma. Leukemia, 2016, 30, 1197-1201.	7.2	12
48	PDK1 plays a vital role on hematopoietic stem cell function. Scientific Reports, 2017, 7, 4943.	3.3	12
49	Multi-gene fluorescence in situ hybridization to detect cell cycle gene copy number aberrations in young breast cancer patients. Cell Cycle, 2014, 13, 1299-1305.	2.6	11
50	La-related protein 4B maintains murine MLL-AF9 leukemia stem cell self-renewal by regulating cell cycle progression. Experimental Hematology, 2015, 43, 309-318.e2.	0.4	11
51	Clinical features, mutations and treatment of 104 patients of Diamond-Blackfan anemia in China: a single-center retrospective study. International Journal of Hematology, 2016, 104, 430-439.	1.6	11
52	Interleukin-1Î ² inhibits normal hematopoietic expansion and promotes acute myeloid leukemia progression via the bone marrow niche. Cytotherapy, 2020, 22, 127-134.	0.7	11
53	Enhanced self-renewal of human long-term hematopoietic stem cells by a sulfamoyl benzoate derivative targeting p18INK4C. Blood Advances, 2021, 5, 3362-3372.	5.2	8
54	Suppression of Cytochrome P450 Reductase Enhances Long-Term Hematopoietic Stem Cell Repopulation Efficiency in Mice. PLoS ONE, 2013, 8, e69913.	2.5	8

WEIPING YUAN

#	Article	IF	CITATIONS
55	Distinct sensitivity of CD8+CD4â ^{~'} and CD8+CD4+ leukemic cell subpopulations to cyclophosphamide and rapamycin in Notch1-induced T-ALL mouse model. Leukemia Research, 2013, 37, 1592-1601.	0.8	7
56	PDK1 regulates definitive HSCs via the FOXO pathway during murine fetal liver hematopoiesis. Stem Cell Research, 2018, 30, 192-200.	0.7	7
57	Overexpression of PRDM5 promotes acute myeloid leukemia cell proliferation and migration by activating the JNK pathway. Cancer Medicine, 2019, 8, 3905-3917.	2.8	7
58	SETD5 modulates homeostasis of hematopoietic stem cells by mediating RNA Polymerase II pausing in cooperation with HCF-1. Leukemia, 2022, 36, 1111-1122.	7.2	7
59	Loss of Tet2 affects platelet function but not coagulation in mice. Blood Science, 2020, 2, 129-136.	0.9	5
60	Sfxn1 is essential for erythrocyte maturation via facilitating hemoglobin production in zebrafish. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166096.	3.8	4
61	Loss of MBD2 attenuates MLL-AF9-driven leukemogenesis by suppressing the leukemic cell cycle via CDKN1C. Oncogenesis, 2021, 10, 79.	4.9	4
62	Loss of MBD2 affects early T cell development by inhibiting the WNT signaling pathway. Experimental Cell Research, 2021, 398, 112400.	2.6	3
63	DNAH2 facilitates the homologous recombination repair of Fanconi anemia pathway through modulating FANCD2 ubiquitination. Blood Science, 2021, 3, 71-77.	0.9	3
64	SHP2 Inhibitors Show Anti-Myeloma Activity and Synergize With Bortezomib in the Treatment of Multiple Myeloma. Frontiers in Pharmacology, 2022, 13, 841308.	3.5	3
65	Reprogramming of Notch1-induced acute lymphoblastic leukemia cells into pluripotent stem cells in mice. Blood Cancer Journal, 2016, 6, e444-e444.	6.2	2
66	Osteopontin is required for the maintenance of leukemia stem cells in acute myeloid leukemia. Biochemical and Biophysical Research Communications, 2022, 600, 29-34.	2.1	2
67	A novel lymphoid progenitor cell population (LSKlow) is restricted by p18INK4c. Experimental Hematology, 2016, 44, 874-885.e5.	0.4	1
68	Rheb1-Deficient Neutrophils Promote Hematopoietic Stem/Progenitor Cell Proliferation via Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 650599.	3.7	1
69	Rapamycin Promotes the Expansion of Myeloid Cells by Increasing C-CSF Expression in Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2022, 10, 779159.	3.7	1
70	Gene expression profiling by mRNA sequencing reveals dysregulation of core genes in Rictor deficient T-ALL mouse model. Leukemia Research, 2019, 87, 106229.	0.8	0
71	PDK1 Controls the Differentiation of Hematopoietic Stem Cells Via Modulating ROS Levels. Blood, 2015, 126, 896-896.	1.4	0